Skip to content

Latest commit

 

History

History
38 lines (30 loc) · 1013 Bytes

Expression Identities.md

File metadata and controls

38 lines (30 loc) · 1013 Bytes

[[Logical Operations]] Two expressions are equivalent if for every possible way to input truth values into the variables, the statements have the same truth value.

We can check this with a truth table.

Claim: ~(P$\land$Q)$\equiv$~P$\land$~Q

P Q ~P ~Q P$\land$Q ~(P$\land$Q) ~P$\land$~Q
T T F F F F F
T F F T F T F
F T T F F T F
F F T T F T T
This claim is false.

If the truth tables differ between any two logical statements, they are not equivalent.

Claim: ~(P$\land$Q)$\equiv$P$\oplus$Q

P Q P$\land$Q ~(P$\land$Q) P$\oplus$Q
T T T F F
T F F T T
F T F T T
F F F T F
This claim is false.

Claim: ~(P$\land$Q)$\equiv$~P$\lor$~Q

P Q ~P ~Q ~(P$\land$Q) ~P$\lor$~Q
T T F F F F
T F F T T T
F T T F T T
F F T T T T
This claim is true.

Since the two expressions yield the same output for any input, they are logically equivalent. [[Logical Equivalence]]