-
Notifications
You must be signed in to change notification settings - Fork 0
/
RUN_2_Pipeline.m
98 lines (81 loc) · 3.89 KB
/
RUN_2_Pipeline.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
% Copyright 2018 - 2021, MIT Lincoln Laboratory
% SPDX-License-Identifier: BSD-2-Clause
%% INPUTS
iso_3166_2 = {'US-KS','US-MA','US-MS','US-NC','US-ND','US-NH','US-NV','US-NY','US-OK','US-PR','US-RI','US-TN','US-TX','US-VA'}; % dev cases
% UAS variables
% https://www.technologyreview.com/s/610735/zipline-launches-the-worlds-fastest-commercial-delivery-drone/
% https://spectrum.ieee.org/robotics/drones/in-the-air-with-ziplines-medical-delivery-drones
%airspeed_kt = [55, 70]; % Approx. zipline cruise and max airspeeds
airspeed_kt = 50;
climbRate_fps = floor(1000 / 60);
descendRate_fps = ceil(-1000/60);
alt_ft_agl = [250];
% Feature parameters
maxSpacing_ft = 50;
%% Iterate over iso_3166_2
for i=1:1:numel(iso_3166_2)
% Define default DEMs and output directory
[dem, demDir, demBackup, demDirBackup, outDirBase, Tdof] = RunHelper_2(iso_3166_2{i});
% Set random seed
rng(i,'twister');
% Load and parse feature data
[S, airspace] = LoadParseEIAPipelines(iso_3166_2{i});
% Iterate over type
u = unique(S.type);
for k=1:1:size(u,1)
% Filter on type
lk = find(strcmp(S.type,u{k}));
minLon = cellfun(@min,S.LON_deg(lk));
minLat = cellfun(@min,S.LAT_deg(lk));
maxLon = cellfun(@max,S.LON_deg(lk));
maxLat = cellfun(@max,S.LAT_deg(lk));
% Bounding box of all features
buff_deg = nm2deg(1);
bbox = [min(minLon)-buff_deg, min(minLat)-buff_deg; max(maxLon)+buff_deg, max(maxLat)+buff_deg];
% Cluster if needed to help prevent loading a computationally intense DEM
if numel(lk) > 10
numClust = 10;
else
numClust = 2;
end
if 100 < distance(bbox(1,2),bbox(1,1),bbox(2,2),bbox(2,1),wgs84Ellipsoid('nm'))
fprintf('Very large bounding box, creating %i kmeans clusters when i=%i, k=%i\n',numClust,i,k);
[idx,~,~] = kmeans([minLat,minLon,maxLat,maxLon],numClust);
else
idx = ones(size(lk));
end
uidx = unique(idx);
% Iterate over clusters
for j=1:1:numel(uidx)
% Filter on cluster
lj = (uidx(j) == idx);
% Filter to include airspace near features of interest
% We do this because looking up airspace is slow
bbox = [min(minLon(lj))-buff_deg, min(minLat(lj))-buff_deg; max(maxLon(lj))+buff_deg, max(maxLat(lj))+buff_deg];
[~, ~, inAirK] = filterboundingbox(airspace.LAT_deg,airspace.LON_deg,bbox);
% Filter DOF obstacles and create S_obstacle
[~, ~, inDofK] = filterboundingbox(Tdof.lat_deg,Tdof.lon_deg,bbox);
S_obstacle = table(Tdof.lat_acc_deg(inDofK),Tdof.lon_acc_deg(inDofK),Tdof.alt_ft_msl(inDofK) - Tdof.alt_ft_agl(inDofK),Tdof.alt_ft_msl(inDofK),'VariableNames',{'LAT_deg','LON_deg','FLOOR_ft_msl','CEILING_ft_msl'});
% Display status
fprintf('%i trajectories, %i potential airspace classes when i=%i, k=%i, j=%i\n',sum(lj),sum(inAirK),i,k,j);
% Generate closed spaced waypoints trajectories
outDir = [outDirBase filesep 'eia_pipeline_' u{k} '_spacing' num2str(maxSpacing_ft)];
GenerateTracks(S(lk(lj),1:3),...
outDir,...
airspace(inAirK,:),...
'trackMode','holdalt',...
'maxSpacing_ft',maxSpacing_ft,...
'alt_tol_ft',25,...
'dem',dem,...
'demDir',demDir,...
'demBackup',demBackup,...
'demDirBackup',demDirBackup,...
'airspeed_kt',airspeed_kt,...
'climbRate_fps',climbRate_fps,...
'descendRate_fps',descendRate_fps,...
'alt_ft_agl',alt_ft_agl,...
'S_obstacle',S_obstacle,...
'isCheckObstacle',true);
end
end
end