-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
69 lines (50 loc) · 1.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import cv2
import numpy as np
# importing SIFT detector
from SIFT_detector import od_SIFT
# importing ORB detector
from ORB_detector import od_ORB
# Loading original template image
img = 'images/phone.png'
template = cv2.imread(img)
cv2.imshow("Template Image", template)
cv2.waitKey(0)
# Initialize videoCapture
capture = cv2.VideoCapture(0)
# Choose the type of object detection algorithm
# od_ORB: ORB (Oriented FAST and Rotated BRIEF)
# od_SIFT: SIFT (Scale-Invariant Feature Transform)
use_this = od_ORB
while True:
# image from webcam
response, frame = capture.read()
# height and width of webcam images
height, width = frame.shape[:2]
# Box dimensions
top_x = int(width/3)
top_y = int((height/2) + (height/4))
bottom_x = int((width/3) * 2)
bottom_y = int((height/2) - (height/4))
# drawing the rectangle with above points
cv2.rectangle(frame, (top_x, top_y), (bottom_x, bottom_y), (0,255,0), 3)
# Seperate the above area
area_of_interest = frame[bottom_y:top_y, top_x:bottom_x]
# flipping the frame
frame = cv2.flip(frame, 1)
# Defining object for 'od_SIFT' class
f = use_this(area_of_interest, template)
matches = f.detector()
# Updating results and showing result on screen
text = ("We have {} matches".format(str(matches)))
cv2.putText(frame, text, (300,630), cv2.FONT_ITALIC, 2 ,(0,0,0), 8)
# threshold to show object detection
threshold = 500
if matches > threshold:
cv2.rectangle(frame, (top_x, top_y), (bottom_x, bottom_y), (255,255,0), 3)
result = "WOW!! Found!"
cv2.putText(frame, result, (750,50), cv2.FONT_ITALIC, 2, (0,255,0), 2)
cv2.imshow("OBJECT DETECTION USING SIFT", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
capture.release()
cv2.destroyAllWindows()