-
Notifications
You must be signed in to change notification settings - Fork 2
/
main.py
276 lines (217 loc) · 10.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import os
import yaml
import argparse
import numpy as np
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.distributions import Categorical
from torch.utils.tensorboard import SummaryWriter
from components.ep_memory import Episodic_Memory
from model import A2C_EPN
from test import test
from utils import ParallelEnv, to_env_actions, convert_states, compute_target
BASE_SEED = 42
def main(config):
device = config["device"]
learning_rate = config["agent"]["lr"]
gamma = config["agent"]["gamma"]
val_coeff = config["agent"]["value-loss-weight"]
entropy_coeff_base = config["agent"]["entropy-weight"]
grad_clip_norm = config["agent"]["grad-clip-norm"]
n_actions = config["task"]["n-actions"]
n_potions = config["task"]["n-potions"]
n_workers = config["agent"]["n-workers"]
n_episodes = config["task"]["n-episodes"]
mem_size = config["agent"]["dict-len"]
mem_dim = 1 + 5 + n_potions + 5 + 1
save_interval = config["save-interval"]
update_interval = config["agent"]["n-step-update"]
steps_per_trial = 15
save_path = os.path.join(config["save-path"], config["run-title"], config["run-title"]+"_{epi:04d}")
writer = SummaryWriter(log_dir=os.path.join(config["log-path"], config["run-title"], config["run-title"]))
model = A2C_EPN(config["agent"], n_actions)
model.to(device)
model.train()
if config["resume"] or config["test"]:
filepath = config["load-path"]
print(f"> Loading Checkpoint {filepath}")
model_data = torch.load(filepath, map_location=torch.device(config["device"]))
model.load_state_dict(model_data["state_dict"])
if config["test"]:
print(f"> Evaluating Episodes")
model.eval()
test(model, config, n_episodes=1000)
exit()
envs = ParallelEnv(n_workers)
optimizer = optim.AdamW(model.parameters(), lr=learning_rate)
lambda_lr = lambda x: max(0.1, float(100_000 - x) / float(100_000))
lr_scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_lr)
entropy_scheduler = lambda x: max(0.01, float(100_000 - x) / float(100_000))
step_idx = 0
states = envs.reset()
episodic_memory = Episodic_Memory(n_workers, mem_size, mem_dim)
p_action = np.zeros((n_workers, n_actions))
p_reward = np.zeros((n_workers, 1))
done = np.array([True]*n_workers)
episode_rewards = np.zeros(n_workers)
steps_this_trial = 1
episode_num = 0
is_optim_step = False
update_counter = 0
total_rewards = []
entropy_coeff = entropy_coeff_base
progress = tqdm(np.arange(n_episodes))
while episode_num < n_episodes:
r_lst, mask_lst = list(), list()
values, log_probs, entropies = list(), list(), list()
if all(done):
ht = torch.zeros((n_workers, model.hidden_dim)).float().to(device)
ct = torch.zeros((n_workers, model.hidden_dim)).float().to(device)
else:
ht, ct = ht.detach(), ct.detach()
for _ in range(update_interval):
mem_mask = episodic_memory.generate_mask()
model_states = convert_states(states)
logit, value, (ht, ct) = model((
torch.from_numpy(model_states).float().to(device),
torch.from_numpy(p_action).float().to(device),
torch.from_numpy(p_reward).float().to(device),
torch.from_numpy(episodic_memory.memory).float().to(device),
torch.from_numpy(mem_mask).float().to(device),
(ht, ct)
))
probs = F.softmax(logit, dim=-1)
log_prob = F.log_softmax(logit, dim=-1)
entropy = -(log_prob * probs).sum(1, keepdim=True)
actions = Categorical(probs).sample().detach()
log_prob = log_prob.gather(1, actions.unsqueeze(1))
actions = actions.cpu().numpy()
env_actions = to_env_actions(states, actions)
s_prime, rewards, done = envs.step(env_actions)
episode_rewards += rewards
######### New Trial #########
if steps_this_trial == steps_per_trial:
steps_this_trial = 1
p_action = np.zeros((n_workers, n_actions))
p_reward = np.zeros((n_workers, 1))
states = s_prime
elif not all(done):
stone_indices = (actions-1) // 7
potion_color_indices = (actions-1) % 7
stone_indices[actions==0] = 0
potion_color_indices[actions==0] = 7
stone_feats = np.zeros((n_workers, 5))
stone_feats_p1 = np.zeros((n_workers, 5))
for worker_idx, stone_idx in enumerate(stone_indices):
stone_feats[worker_idx] = states[worker_idx, stone_idx*5:(stone_idx+1)*5]
stone_feats_p1[worker_idx] = s_prime[worker_idx, stone_idx*5:(stone_idx+1)*5]
potion_color_onehot = np.eye(n_potions)[potion_color_indices]
penalty = np.zeros(n_workers)
# if action doesn't have any effect on stone and action is not NoOp
pen_mask = (states[:, :15]==s_prime[:, :15]).all(-1) * (actions != 0)
penalty[pen_mask] = -0.2
# choosing an empty or non-existent potion or using a cached stone
pen_mask = (states==s_prime).all(-1) * (actions != 0)
penalty[pen_mask] = -1
# choosing the same potion color consecutively
pen_mask = (actions % 7 != 0) * (actions == p_action.argmax(-1))
penalty[pen_mask] += -1
rewards += penalty
memories = np.concatenate([
stone_indices[:, np.newaxis],
stone_feats,
potion_color_onehot,
stone_feats_p1,
rewards[:, np.newaxis]
], axis=-1)
episodic_memory.push(memories)
p_reward = rewards[:, np.newaxis]
p_action = np.eye(n_actions)[actions]
states = s_prime
steps_this_trial += 1
values.append(value)
entropies.append(entropy)
log_probs.append(log_prob)
r_lst.append(rewards)
mask_lst.append(1 - done)
step_idx += 1
if all(done):
states = envs.reset()
p_action = np.zeros((n_workers, n_actions))
p_reward = np.zeros((n_workers, 1))
episodic_memory.reset()
episode_num += 1
if is_optim_step:
lr_scheduler.step()
last_lr = lr_scheduler.get_last_lr()[0]
entropy_coeff = entropy_coeff_base * entropy_scheduler(episode_num)
else:
last_lr = learning_rate
total_rewards += [episode_rewards.mean()]
avg_reward_100 = np.array(total_rewards[-100:]).mean()
writer.add_scalar("perf/reward_t", episode_rewards.mean(), episode_num)
writer.add_scalar("perf/avg_reward_100", avg_reward_100, episode_num)
writer.add_scalar("perf/lr", last_lr, episode_num)
writer.add_scalar("perf/entropy_coeff", entropy_coeff, episode_num)
episode_rewards = np.zeros(n_workers)
progress.update()
if episode_num % save_interval == 0:
test_reward_100 = test(model, config)
writer.add_scalar("perf/test_reward_100", test_reward_100, episode_num)
torch.save({
"test_reward_100": test_reward_100,
"state_dict": model.state_dict(),
"avg_reward_100": avg_reward_100,
}, save_path.format(epi=episode_num) + ".pt")
mem_mask = episodic_memory.generate_mask()
model_states = convert_states(s_prime)
_, value, _ = model((
torch.from_numpy(model_states).float().to(device),
torch.from_numpy(np.eye(n_actions)[actions]).float().to(device),
torch.from_numpy(rewards[:, np.newaxis]).float().to(device),
torch.from_numpy(episodic_memory.memory).float().to(device),
torch.from_numpy(mem_mask).float().to(device),
(ht, ct)
))
values = torch.stack(values)
log_probs = torch.stack(log_probs)
entropies = torch.stack(entropies)
td_target = compute_target(value.detach().cpu().numpy(), r_lst, mask_lst, gamma)
td_target = td_target.to(device)
td_target_vec = td_target.reshape(-1)
advantage = td_target_vec - values.reshape(-1)
action_loss = -(log_probs.reshape(-1) * advantage.detach()).mean()
value_loss = F.smooth_l1_loss(values.reshape(-1), td_target_vec) # or advantage.pow(2).mean()
entropy = entropies.reshape(-1).mean()
loss = value_loss * val_coeff + action_loss - entropy * entropy_coeff
optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip_norm)
optimizer.step()
is_optim_step = True
writer.add_scalar("losses/total_loss", loss.item(), update_counter)
writer.add_scalar("losses/value_loss", value_loss.item(), update_counter)
writer.add_scalar("losses/action_loss", action_loss.item(), update_counter)
writer.add_scalar("losses/entropy", entropy.item(), update_counter)
update_counter += 1
envs.close()
if __name__ == '__main__':
os.environ['KMP_DUPLICATE_LIB_OK']='True'
parser = argparse.ArgumentParser(description='Paramaters')
parser.add_argument('-c', '--config', type=str, default="config.yaml", help='path of config file')
args = parser.parse_args()
with open(args.config, 'r', encoding="utf-8") as fin:
config = yaml.load(fin, Loader=yaml.FullLoader)
exp_path = os.path.join(config["save-path"], config["run-title"])
if not os.path.isdir(exp_path):
os.mkdir(exp_path)
out_path = os.path.join(exp_path, os.path.basename(args.config))
with open(out_path, 'w') as fout:
yaml.dump(config, fout)
print("="*50)
print(f"Running {config['run-title']}")
print("="*50)
main(config)