-
Notifications
You must be signed in to change notification settings - Fork 32
/
evaluate.py
264 lines (210 loc) · 12.6 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
# Copyright 2019 RBC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# evaluate.py is used to create the synthetic data generation and evaluation pipeline.
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, BaggingRegressor
from sklearn.neural_network import MLPClassifier, MLPRegressor
from sklearn.linear_model import Ridge, Lasso, ElasticNet
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import roc_auc_score, mean_squared_error
from sklearn import preprocessing
from scipy.special import expit
from models import dp_wgan, pate_gan, ron_gauss
from models.Private_PGM import private_pgm
import argparse
import numpy as np
import pandas as pd
import collections
import os
try:
from models.IMLE import imle
except ImportError as error:
pass
parser = argparse.ArgumentParser()
parser.add_argument('--categorical', action='store_true', help='All attributes of the data are categorical with small domains')
parser.add_argument('--target-variable', help='Required if data has a target class')
parser.add_argument('--train-data-path', required=True)
parser.add_argument('--test-data-path', required=True)
parser.add_argument('--normalize-data', action='store_true', help='Apply sigmoid function to each value in the data')
parser.add_argument('--disable-cuda', action='store_true', help='Disable CUDA')
parser.add_argument('--downstream-task', default="classification", help='classification | regression')
privacy_parser = argparse.ArgumentParser(add_help=False)
privacy_parser.add_argument('--enable-privacy', action='store_true', help='Enable private data generation')
privacy_parser.add_argument('--target-epsilon', type=float, default=8, help='Epsilon differential privacy parameter')
privacy_parser.add_argument('--target-delta', type=float, default=1e-5, help='Delta differential privacy parameter')
privacy_parser.add_argument('--save-synthetic', action='store_true', help='Save the synthetic data into csv')
privacy_parser.add_argument('--output-data-path', help='Required if synthetic data needs to be saved')
noisy_sgd_parser = argparse.ArgumentParser(add_help=False)
noisy_sgd_parser.add_argument('--sigma', type=float,
default=2, help='Gaussian noise variance multiplier. A larger sigma will make the model '
'train for longer epochs for the same privacy budget')
noisy_sgd_parser.add_argument('--clip-coeff', type=float,
default=0.1, help='The coefficient to clip the gradients before adding noise for private '
'SGD training')
noisy_sgd_parser.add_argument('--micro-batch-size',
type=int, default=8,
help='Parameter to tradeoff speed vs efficiency. Gradients are averaged for a microbatch '
'and then clipped before adding noise')
noisy_sgd_parser.add_argument('--num-epochs', type=int, default=500)
noisy_sgd_parser.add_argument('--batch-size', type=int, default=64)
subparsers = parser.add_subparsers(help="generative model type", dest="model")
parser_pate_gan = subparsers.add_parser('pate-gan', parents=[privacy_parser])
parser_pate_gan.add_argument('--lap-scale', type=float,
default=0.0001, help='Inverse laplace noise scale multiplier. A larger lap_scale will '
'reduce the noise that is added per iteration of training.')
parser_pate_gan.add_argument('--batch-size', type=int, default=64)
parser_pate_gan.add_argument('--num-teachers', type=int, default=10, help="Number of teacher disciminators in the pate-gan model")
parser_pate_gan.add_argument('--teacher-iters', type=int, default=5, help="Teacher iterations during training per generator iteration")
parser_pate_gan.add_argument('--student-iters', type=int, default=5, help="Student iterations during training per generator iteration")
parser_pate_gan.add_argument('--num-moments', type=int, default=100, help="Number of higher moments to use for epsilon calculation for pate-gan")
parser_ron_gauss = subparsers.add_parser('ron-gauss', parents=[privacy_parser])
parser_pgm = subparsers.add_parser('private-pgm', parents=[privacy_parser])
parser_real_data = subparsers.add_parser('real-data')
parser_imle = subparsers.add_parser('imle', parents=[privacy_parser, noisy_sgd_parser])
parser_imle.add_argument('--decay-step', type=int, default=25)
parser_imle.add_argument('--decay-rate', type=float, default=1.0)
parser_imle.add_argument('--staleness', type=int, default=5, help="Number of iterations after which new synthetic samples are generated")
parser_imle.add_argument('--num-samples-factor', type=int, default=10, help="Number of synthetic samples generated per real data point")
parser_dp_wgan = subparsers.add_parser('dp-wgan', parents=[privacy_parser, noisy_sgd_parser])
parser_dp_wgan.add_argument('--clamp-lower', type=float, default=-0.01, help="Clamp parameter for wasserstein GAN")
parser_dp_wgan.add_argument('--clamp-upper', type=float, default=0.01, help="Clamp parameter for wasserstein GAN")
opt = parser.parse_args()
# Loading the data
train = pd.read_csv(opt.train_data_path)
test = pd.read_csv(opt.test_data_path)
data_columns = [col for col in train.columns if col != opt.target_variable]
if opt.categorical:
combined = train.append(test)
config = {}
for col in combined.columns:
col_count = len(combined[col].unique())
config[col] = col_count
class_ratios = None
if opt.downstream_task == "classification":
class_ratios = train[opt.target_variable].sort_values().groupby(train[opt.target_variable]).size().values/train.shape[0]
X_train = np.nan_to_num(train.drop([opt.target_variable], axis=1).values)
y_train = np.nan_to_num(train[opt.target_variable].values)
X_test = np.nan_to_num(test.drop([opt.target_variable], axis=1).values)
y_test = np.nan_to_num(test[opt.target_variable].values)
if opt.normalize_data:
X_train = expit(X_train)
X_test = expit(X_test)
input_dim = X_train.shape[1]
z_dim = int(input_dim / 4 + 1) if input_dim % 4 == 0 else int(input_dim / 4)
conditional = (opt.downstream_task == "classification")
# Training the generative model
if opt.model == 'pate-gan':
Hyperparams = collections.namedtuple(
'Hyperarams',
'batch_size num_teacher_iters num_student_iters num_moments lap_scale class_ratios lr')
Hyperparams.__new__.__defaults__ = (None, None, None, None, None, None, None)
model = pate_gan.PATE_GAN(input_dim, z_dim, opt.num_teachers, opt.target_epsilon, opt.target_delta, conditional)
model.train(X_train, y_train, Hyperparams(batch_size=opt.batch_size, num_teacher_iters=opt.teacher_iters,
num_student_iters=opt.student_iters, num_moments=opt.num_moments,
lap_scale=opt.lap_scale, class_ratios=class_ratios, lr=1e-4))
elif opt.model == 'dp-wgan':
Hyperparams = collections.namedtuple(
'Hyperarams',
'batch_size micro_batch_size clamp_lower clamp_upper clip_coeff sigma class_ratios lr num_epochs')
Hyperparams.__new__.__defaults__ = (None, None, None, None, None, None, None, None, None)
model = dp_wgan.DP_WGAN(input_dim, z_dim, opt.target_epsilon, opt.target_delta, conditional)
model.train(X_train, y_train, Hyperparams(batch_size=opt.batch_size, micro_batch_size=opt.micro_batch_size,
clamp_lower=opt.clamp_lower, clamp_upper=opt.clamp_upper,
clip_coeff=opt.clip_coeff, sigma=opt.sigma, class_ratios=class_ratios, lr=
5e-5, num_epochs=opt.num_epochs), private=opt.enable_privacy)
elif opt.model == 'ron-gauss':
model = ron_gauss.RONGauss(z_dim, opt.target_epsilon, opt.target_delta, conditional)
elif opt.model == 'imle':
Hyperparams = collections.namedtuple(
'Hyperarams',
'lr batch_size micro_batch_size sigma num_epochs class_ratios clip_coeff decay_step decay_rate staleness num_samples_factor')
Hyperparams.__new__.__defaults__ = (None, None, None, None, None, None, None, None)
model = imle.IMLE(input_dim, z_dim, opt.target_epsilon, opt.target_delta, conditional)
model.train(X_train, y_train, Hyperparams(lr=1e-3, batch_size=opt.batch_size, micro_batch_size=opt.micro_batch_size,
sigma=opt.sigma, num_epochs=opt.num_epochs, class_ratios=class_ratios,
clip_coeff=opt.clip_coeff, decay_step=opt.decay_step,
decay_rate=opt.decay_rate, staleness=opt.staleness,
num_samples_factor=opt.num_samples_factor), private=opt.enable_privacy)
elif opt.model == 'private-pgm':
if not conditional:
raise Exception('Private PGM cannot be used to generate data for regression')
model = private_pgm.Private_PGM(opt.target_variable, opt.target_epsilon, opt.target_delta)
model.train(train, config)
# Generating synthetic data from the trained model
if opt.model == 'real-data':
X_syn = X_train
y_syn = y_train
elif opt.model == 'ron-gauss':
if conditional:
X_syn, y_syn, dp_mean_dict = model.generate(X_train, y=y_train)
for label in np.unique(y_test):
idx = np.where(y_test == label)
x_class = X_test[idx]
x_norm = preprocessing.normalize(x_class)
x_bar = x_norm - dp_mean_dict[label]
x_bar = preprocessing.normalize(x_bar)
X_test[idx] = x_bar
else:
X_syn, y_syn, mu_dp = model.generate(X_train, y_train,
max_y=np.max(np.concatenate([y_train,y_test], axis=0)))
X_norm = preprocessing.normalize((X_test))
X_bar = X_norm - mu_dp
X_test = preprocessing.normalize(X_bar)
elif opt.model == 'imle' or opt.model == 'dp-wgan' or opt.model == 'pate-gan':
syn_data = model.generate(X_train.shape[0], class_ratios)
X_syn, y_syn = syn_data[:, :-1], syn_data[:, -1]
elif opt.model == 'private-pgm':
syn_data = model.generate()
X_syn, y_syn = syn_data[:, :-1], syn_data[:, -1]
# Testing the quality of synthetic data by training and testing the downstream learners
# Creating downstream learners
learners = []
if opt.downstream_task == "classification":
names = ['LR', 'Random Forest', 'Neural Network', 'GaussianNB', 'GradientBoostingClassifier']
learners.append((LogisticRegression()))
learners.append((RandomForestClassifier()))
learners.append((MLPClassifier(early_stopping=True)))
learners.append((GaussianNB()))
learners.append((GradientBoostingClassifier()))
print("AUC scores of downstream classifiers on test data : ")
for i in range(0, len(learners)):
score = learners[i].fit(X_syn, y_syn)
pred_probs = learners[i].predict_proba(X_test)
auc_score = roc_auc_score(y_test, pred_probs[:, 1])
print('-' * 40)
print('{0}: {1}'.format(names[i], auc_score))
else:
names = ['Ridge', 'Lasso', 'ElasticNet', 'Bagging', 'MLP']
learners.append((Ridge()))
learners.append((Lasso()))
learners.append((ElasticNet()))
learners.append((BaggingRegressor()))
learners.append((MLPRegressor()))
print("RMSE scores of downstream regressors on test data : ")
for i in range(0, len(learners)):
score = learners[i].fit(X_syn, y_syn)
pred_vals = learners[i].predict(X_test)
rmse = np.sqrt(mean_squared_error(y_test, pred_vals))
print('-' * 40)
print('{0}: {1}'.format(names[i], rmse))
if opt.model != 'real-data':
if opt.save_synthetic:
if not os.path.isdir(opt.output_data_path):
raise Exception('Output directory does not exist')
X_syn_df = pd.DataFrame(data=X_syn, columns=data_columns)
y_syn_df = pd.DataFrame(data=y_syn, columns=[opt.target_variable])
syn_df = pd.concat([X_syn_df, y_syn_df], axis=1)
syn_df.to_csv(opt.output_data_path + "/synthetic_data.csv")
print("Saved synthetic data at : ", opt.output_data_path)