-
Notifications
You must be signed in to change notification settings - Fork 472
/
ppo_sentiments_llama.py
111 lines (96 loc) · 3.1 KB
/
ppo_sentiments_llama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# Generates positive movie reviews by tuning a pretrained model on IMDB dataset
# with a sentiment reward function
import json
import os
import sys
from typing import List
import torch
from datasets import load_dataset
from transformers import pipeline
import trlx
from trlx.data.default_configs import (
ModelConfig,
OptimizerConfig,
PPOConfig,
SchedulerConfig,
TokenizerConfig,
TrainConfig,
TRLConfig,
)
def get_positive_score(scores):
"Extract value associated with a positive sentiment from pipeline's output"
return dict(map(lambda x: tuple(x.values()), scores))["POSITIVE"]
def llama_config():
return TRLConfig(
train=TrainConfig(
seq_length=1024,
epochs=100,
total_steps=400,
batch_size=32,
checkpoint_interval=10000,
eval_interval=100,
pipeline="PromptPipeline",
trainer="AcceleratePPOTrainer",
save_best=False,
),
model=ModelConfig(model_path="NousResearch/Llama-2-7b-hf", num_layers_unfrozen=2),
tokenizer=TokenizerConfig(tokenizer_path="NousResearch/Llama-2-7b-hf", truncation_side="right"),
optimizer=OptimizerConfig(
name="adamw", kwargs=dict(lr=1e-5, betas=(0.9, 0.95), eps=1.0e-8, weight_decay=1.0e-6)
),
scheduler=SchedulerConfig(name="cosine_annealing", kwargs=dict(T_max=10000, eta_min=1.0e-5)),
method=PPOConfig(
name="PPOConfig",
num_rollouts=128,
chunk_size=128,
ppo_epochs=4,
init_kl_coef=0.001,
target=6,
horizon=10000,
gamma=1,
lam=0.95,
cliprange=0.2,
cliprange_value=0.2,
vf_coef=1,
scale_reward="ignored",
ref_mean=None,
ref_std=None,
cliprange_reward=10,
gen_kwargs=dict(
max_new_tokens=40,
top_k=0,
top_p=1.0,
do_sample=True,
),
),
)
def main(hparams={}):
# Merge sweep config with default config if given
config = TRLConfig.update(llama_config().to_dict(), hparams)
if torch.cuda.is_available():
device = int(os.environ.get("LOCAL_RANK", 0))
else:
device = -1
sentiment_fn = pipeline(
"sentiment-analysis",
"lvwerra/distilbert-imdb",
top_k=2,
truncation=True,
batch_size=256,
device=device,
)
def reward_fn(samples: List[str], **kwargs) -> List[float]:
sentiments = list(map(get_positive_score, sentiment_fn(samples)))
return sentiments
# Take few words off of movies reviews as prompts
imdb = load_dataset("imdb", split="train+test")
prompts = [" ".join(review.split()[:4]) for review in imdb["text"]]
trlx.train(
reward_fn=reward_fn,
prompts=prompts,
eval_prompts=["I don't know much about Hungarian underground"] * 64,
config=config,
)
if __name__ == "__main__":
hparams = {} if len(sys.argv) == 1 else json.loads(sys.argv[1])
main(hparams)