-
Notifications
You must be signed in to change notification settings - Fork 472
/
sft_sentiments.py
50 lines (38 loc) · 1.44 KB
/
sft_sentiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import json
import os
import sys
from typing import Dict, List
from datasets import load_dataset
from transformers import pipeline
import trlx
from trlx.data.default_configs import TRLConfig, default_sft_config
def get_positive_score(scores):
"Extract value associated with a positive sentiment from pipeline's output"
return dict(map(lambda x: tuple(x.values()), scores))["POSITIVE"]
def main(hparams={}):
# Merge sweep config with default config if given
config = TRLConfig.update(default_sft_config().to_dict(), hparams)
imdb = load_dataset("imdb", split="train+test")
# Finetune on only positive reviews
imdb = imdb.filter(lambda sample: sample["label"] == 1)
sentiment_fn = pipeline(
"sentiment-analysis",
"lvwerra/distilbert-imdb",
top_k=2,
truncation=True,
batch_size=256,
device=0 if int(os.environ.get("LOCAL_RANK", 0)) == 0 else -1,
)
def metric_fn(samples: List[str], **kwargs) -> Dict[str, List[float]]:
sentiments = list(map(get_positive_score, sentiment_fn(samples)))
return {"sentiments": sentiments}
trainer = trlx.train(
samples=imdb["text"],
eval_prompts=["I don't know much about Hungarian underground"] * 64,
metric_fn=metric_fn,
config=config,
)
trainer.save_pretrained("reviews-sft")
if __name__ == "__main__":
hparams = {} if len(sys.argv) == 1 else json.loads(sys.argv[1])
main(hparams)