forked from XYBbo5/D-PAD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_long.py
149 lines (127 loc) · 6.86 KB
/
run_long.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from experiments.exp_ETT import Exp_ETT
import argparse
import os
import torch
import numpy as np
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.multiprocessing as mp
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
os.environ['TORCH_DISTRIBUTED_DEBUG'] = 'INFO'
parser = argparse.ArgumentParser(description='D-PAD on ETT dataset')
parser.add_argument('--model', type=str, default='DPAD_GCN',
help='model of the experiment')
# ------- dataset settings --------------
parser.add_argument('--data', type=str, required=False, default='ETTh1', choices=[
'ETTh1', 'ETTh2', 'ETTm1', 'ETTm2', 'ECL', 'traffic', 'weather', 'electricity'], help='name of dataset')
parser.add_argument('--root_path', type=str,
default='./datasets/long/', help='root path of the data file')
parser.add_argument('--data_path', type=str,
default='ETTh1.csv', help='location of the data file')
parser.add_argument('--features', type=str, default='M',
choices=['S', 'M'], help='features S is univariate, M is multivariate')
parser.add_argument('--target', type=str, default='OT', help='target feature')
parser.add_argument('--checkpoints', type=str,
default='exp/run_ETT/', help='location of model checkpoints')
# ------- model settings --------------
parser.add_argument('--seq_len', type=int, default=336,
help='look back window')
parser.add_argument('--label_len', type=int, default=0,
help='start token length of Informer decoder')
parser.add_argument('--pred_len', type=int, default=336,
help='prediction sequence length, horizon')
parser.add_argument('--enc_hidden', default=336, type=int,
help='hidden size of DRD module')
parser.add_argument('--dec_hidden', default=336, type=int,
help='hidden size of IF module')
parser.add_argument('--dropout', type=float, default=0.5, help='dropout')
parser.add_argument('--levels', type=int, default=2)
parser.add_argument('--K_IMP', type=int, default=6)
parser.add_argument('--num_heads', type=int, default=1)
# ------- training settings --------------
parser.add_argument('--cols', type=str, nargs='+', help='file list')
parser.add_argument('--num_workers', type=int, default=1,
help='data loader num workers')
parser.add_argument('--itr', type=int, default=0, help='experiments times')
parser.add_argument('--train_epochs', type=int,
default=100, help='train epochs')
parser.add_argument('--batch_size', type=int, default=512,
help='batch size of train input data')
parser.add_argument('--patience', type=int, default=5,
help='early stopping patience')
parser.add_argument('--lr', type=float, default=0.0001,
help='optimizer learning rate')
parser.add_argument('--loss', type=str, default='mae', help='loss function')
parser.add_argument('--lradj', type=int, default=1,
help='adjust learning rate')
parser.add_argument('--use_amp', action='store_true',
help='use automatic mixed precision training', default=False)
parser.add_argument('--save', type=bool, default=False,
help='save the output results')
parser.add_argument('--model_name', type=str, default='DPAD_GCN')
parser.add_argument('--RIN', default=1, type=int, help='ReVIN')
parser.add_argument('--evaluate', type=int, default=0)
parser.add_argument('--rank', type=int, default=0)
args = parser.parse_args()
def main(rank, world_size):
dist.init_process_group("nccl", rank=rank, world_size=world_size)
torch.manual_seed(79*(rank+1)) # reproducible
torch.cuda.manual_seed_all(79*(rank+1))
torch.backends.cudnn.benchmark = False
# Can change it to False --> default: False
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.enabled = True
mae_ = []
mse_ = []
Exp = Exp_ETT
if args.evaluate:
setting = '{}_{}_ft{}_sl{}_pl{}_imp{}_lr{}_bs{}_eh{}_dh{}_l{}_dp{}_itr0_K{}'.format(
args.model, args.data, args.features, args.seq_len, args.pred_len, args.K_IMP, args.lr, args.batch_size, args.enc_hidden, args.dec_hidden, args.levels, args.dropout, args.K_IMP)
args.rank = rank
exp = Exp(args) # set experiments
exp.model = DDP(exp.model, device_ids=[rank])
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
mse, mae = exp.test(setting, evaluate=1)
print('Final mean normed mse:{:.4f},mae:{:.4f}'.format(mse, mae))
else:
if args.itr:
for ii in range(args.itr):
# setting record of experiments
setting = '{}_{}_ft{}_sl{}_pl{}_imp{}_lr{}_bs{}_eh{}_dh{}_l{}_dp{}_itr{}_K{}'.format(
args.model, args.data, args.features, args.seq_len, args.pred_len, args.K_IMP, args.lr, args.batch_size, args.enc_hidden, args.dec_hidden, args.levels, args.dropout, ii, args.K_IMP)
args.rank = rank
exp = Exp(args) # set experiments
exp.model = DDP(exp.model, device_ids=[
rank], find_unused_parameters=True)
print(
'>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
exp.train(setting)
print(
'>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
mae, mse = exp.test(setting)
mae_.append(mae)
mse_.append(mse)
torch.cuda.empty_cache()
print('Final mean normed mse:{:.4f}, std mse:{:.4f}, mae:{:.4f}, std mae:{:.4f}'.format(
np.mean(mse_), np.std(mse_), np.mean(mae_), np.std(mae_)))
print('Final min normed mse:{:.4f}, mae:{:.4f}'.format(
min(mse_), min(mae_)))
else:
setting = '{}_{}_ft{}_sl{}_pl{}_imp{}_lr{}_bs{}_eh{}_dh{}_l{}_dp{}_itr0_K{}'.format(
args.model, args.data, args.features, args.seq_len, args.pred_len, args.K_IMP, args.lr, args.batch_size, args.enc_hidden, args.dec_hidden, args.levels, args.dropout, args.K_IMP)
args.rank = rank
exp = Exp(args) # set experiments
exp.model = DDP(exp.model, device_ids=[rank])
print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
exp.train(setting)
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
mae, mse = exp.test(setting)
print('Final mean normed mse:{:.4f},mae:{:.4f}'.format(mse, mae))
if __name__ == '__main__':
world_size = 4
mp.spawn(main,
args=(world_size,),
nprocs=world_size,
join=True)