Skip to content

Latest commit

 

History

History
62 lines (44 loc) · 2.1 KB

File metadata and controls

62 lines (44 loc) · 2.1 KB

PROST

Paper

Title: PROST: Physical Reasoning about Objects Through Space and Time

Abstract: https://arxiv.org/abs/2106.03634

PROST, Physical Reasoning about Objects Through Space and Time, is a dataset consisting of 18,736 multiple-choice questions made from 14 manually curated templates, covering 10 physical reasoning concepts. All questions are designed to probe both causal and masked language models in a zero-shot setting.

NOTE: PROST is limited to the zero-shot setting to adhere to authors' intentions as discussed in section 7 of the paper: "We hope that the community will use this dataset in the intended way: in a zero-shot setting to probe models which have been trained on data not specifically collected to succeed on PROST."

Homepage: https://github.com/nala-cub/prost

Citation

@inproceedings{aroca-ouellette-etal-2021-prost,
    title = "{PROST}: {P}hysical Reasoning about Objects through Space and Time",
    author = "Aroca-Ouellette, St{\'e}phane  and
      Paik, Cory  and
      Roncone, Alessandro  and
      Kann, Katharina",
    booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.findings-acl.404",
    pages = "4597--4608",
}

Groups and Tasks

Groups

  • Not part of a group yet.

Tasks

  • prost

Checklist

For adding novel benchmarks/datasets to the library:

  • Is the task an existing benchmark in the literature?
    • Have you referenced the original paper that introduced the task?
    • If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?

If other tasks on this dataset are already supported:

  • Is the "Main" variant of this task clearly denoted?
  • Have you provided a short sentence in a README on what each new variant adds / evaluates?
  • Have you noted which, if any, published evaluation setups are matched by this variant?