-
Notifications
You must be signed in to change notification settings - Fork 33
/
cached_convnet.py
187 lines (163 loc) · 6.94 KB
/
cached_convnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# based on https://github.com/YangangCao/Causal-U-Net/blob/main/cunet.py
import torch
import torch.nn as nn
import torch.nn.functional as F
class ResidualBlock(nn.Module):
"""
Based on https://github.com/f90/Seq-U-Net/blob/master/sequnet_res.py
"""
def __init__(self, in_channels, out_channels, kernel_size, dilation, dropout,
use_2d):
super().__init__()
self.use_2d = use_2d
if use_2d:
self.filter = nn.Conv2d(in_channels, out_channels,
kernel_size, dilation=dilation)
self.gate = nn.Conv2d(in_channels, out_channels,
kernel_size, dilation=dilation)
self.dropout = nn.Dropout2d(dropout)
else:
self.filter = nn.Conv1d(in_channels, out_channels,
kernel_size, dilation=dilation)
self.gate = nn.Conv1d(in_channels, out_channels,
kernel_size, dilation=dilation)
self.dropout = nn.Dropout1d(dropout)
self.output_crop = dilation * (kernel_size - 1)
def forward(self, x):
filtered = torch.tanh(self.filter(x))
gated = torch.sigmoid(self.gate(x))
residual = filtered * gated
# pad dim 1 of x to match residual
if self.use_2d:
x = F.pad(x, (0, 0, 0, 0, 0, residual.shape[1] - x.shape[1]))
output = x[..., self.output_crop:, self.output_crop:] + residual
else:
x = F.pad(x, (0, 0, 0, residual.shape[1] - x.shape[1]))
output = x[..., self.output_crop:] + residual
output = self.dropout(output)
return output
class CausalConvBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, dilation, dropout,
use_2d):
super().__init__()
if use_2d:
conv_layer = nn.Conv2d
batchnorm_layer = nn.BatchNorm2d
dropout_layer = nn.Dropout2d
else:
conv_layer = nn.Conv1d
batchnorm_layer = nn.BatchNorm1d
dropout_layer = nn.Dropout1d
self.conv = nn.Sequential(
conv_layer(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
dilation=dilation),
batchnorm_layer(num_features=out_channels),
dropout_layer(dropout),
nn.LeakyReLU(inplace=True),
)
def forward(self, x):
"""
1D Causal convolution.
"""
return self.conv(x)
class CachedConvNet(nn.Module):
def __init__(self, num_channels, kernel_sizes, dilations,
dropout, combine_residuals, use_residual_blocks,
out_channels, use_2d, use_pool=False, pool_kernel=2):
super().__init__()
assert (len(kernel_sizes) == len(dilations)
), "kernel_sizes and dilations must be the same length"
assert (len(kernel_sizes) == len(out_channels)), \
"kernel_sizes and out_channels must be the same length"
self.num_layers = len(kernel_sizes)
self.ctx_height = max(out_channels)
self.down_convs = nn.ModuleList()
self.num_channels = num_channels
self.kernel_sizes = kernel_sizes
self.combine_residuals = combine_residuals
self.use_2d = use_2d
self.use_pool = use_pool
# compute buffer lengths for each layer
self.buf_lengths = [
(k - 1) * d for k, d in zip(kernel_sizes, dilations)]
# Compute buffer start indices for each layer
self.buf_indices = [0]
for i in range(len(kernel_sizes) - 1):
self.buf_indices.append(
self.buf_indices[-1] + self.buf_lengths[i])
if use_residual_blocks:
block = ResidualBlock
else:
block = CausalConvBlock
if self.use_pool:
self.pool = nn.AvgPool1d(kernel_size=pool_kernel)
for i in range(self.num_layers):
in_channel = num_channels if i == 0 else out_channels[i - 1]
self.down_convs.append(
block(
in_channels=in_channel,
out_channels=out_channels[i],
kernel_size=kernel_sizes[i],
dilation=dilations[i],
dropout=dropout,
use_2d=use_2d))
def init_ctx_buf(self, batch_size, device, height=None):
"""
Initialize context buffer for each layer.
"""
if height is not None:
up_ctx = torch.zeros(
(batch_size, self.ctx_height, height, sum(self.buf_lengths))).to(device)
else:
up_ctx = torch.zeros(
(batch_size, self.ctx_height, sum(self.buf_lengths))).to(device)
return up_ctx
def forward(self, x, ctx):
"""
Args:
x: [B, in_channels, T]
Input
ctx: {[B, channels, self.buf_length[0]], ...}
A list of tensors holding context for each unet layer. (len(ctx) == self.num_layers)
Returns:
x: [B, out_channels, T]
ctx: {[B, channels, self.buf_length[0]], ...}
Updated context buffer with output as the
last element.
"""
if self.use_pool:
x = self.pool(x)
for i in range(self.num_layers):
buf_start_idx = self.buf_indices[i]
buf_end_idx = self.buf_indices[i] + self.buf_lengths[i]
# concatenate context buffer with input
if self.use_2d:
conv_in = torch.cat(
(ctx[..., :x.shape[1], :x.shape[-2], buf_start_idx:buf_end_idx], x), dim=-1)
else:
conv_in = torch.cat(
(ctx[..., :x.shape[-2], buf_start_idx:buf_end_idx], x), dim=-1)
# Push current output to the context buffer
if self.use_2d:
ctx[..., :x.shape[1], :x.shape[-2],
buf_start_idx:buf_end_idx] = conv_in[..., -self.buf_lengths[i]:]
else:
ctx[..., :x.shape[1], buf_start_idx:buf_end_idx] = conv_in[..., -
self.buf_lengths[i]:]
# pad second-to-last index of input with self.buf_lengths[i] // 2 zeros
# on each side to ensure that height of output is the same as input
if self.use_2d:
conv_in = F.pad(
conv_in, (0, 0, self.buf_lengths[i] // 2, self.buf_lengths[i] // 2))
if self.combine_residuals == 'add':
x = x + self.down_convs[i](conv_in)
elif self.combine_residuals == 'multiply':
x = x * self.down_convs[i](conv_in)
else:
x = self.down_convs[i](conv_in)
if self.use_pool:
x = F.interpolate(x, scale_factor=self.pool.kernel_size[0])
return x, ctx