Skip to content

Latest commit

 

History

History
322 lines (267 loc) · 13.1 KB

README.md

File metadata and controls

322 lines (267 loc) · 13.1 KB

Performance is not enough: the story told by a Rashomon's quartet

figures/figure1.png

This repository contains the code to reproduce the data, models, and visualizations described in the paper:

P. Biecek, H. Baniecki, M. Krzyziński, D. Cook. Performance is not enough: the story told by a Rashomon’s quartet. Preprint arXiv:2302.13356v2, 2023.

See also an R file replicate.r

Graphical overview of Rashomon's quartet

Graphical overview of Rashomon's couple

Read data

train <- read.table("rq_train.csv", sep=";", header=TRUE)
test  <- read.table("rq_test.csv", sep=";", header=TRUE)

Train models

set.seed(1568) 
library(DALEX)

library(partykit)
model_dt <- ctree(y~., data = train, control = ctree_control(maxdepth = 3, minsplit = 250))
exp_dt <- DALEX::explain(model_dt, data = test[,-1], y = test[,1], 
                         verbose = FALSE, label="decision tree")
mp_dt <- model_performance(exp_dt)
imp_dt <- model_parts(exp_dt, N=NULL, B=1, type = "difference")

model_lm <- lm(y~., data = train)
exp_lm <- DALEX::explain(model_lm, data = test[,-1], y = test[,1], 
                         verbose = FALSE, label="linear regression")
mp_lm <- model_performance(exp_lm)
imp_lm <- model_parts(exp_lm, N=NULL, B=1, type = "difference")

library(randomForest)
model_rf <- randomForest(y~., data = train, ntree = 100)
exp_rf <- DALEX::explain(model_rf, data = test[,-1], y = test[,1], 
                         verbose = FALSE, label="random forest")
mp_rf <- model_performance(exp_rf)
imp_rf <- model_parts(exp_rf, N=NULL, B=1, type = "difference")

library(neuralnet)
model_nn <- neuralnet(y~., data = train, hidden=c(8, 4), threshold=0.05)
exp_nn <- DALEX::explain(model_nn, data = test[,-1], y = test[,1], 
                        verbose = FALSE, label="neural network")
mp_nn <- model_performance(exp_nn)
imp_nn <- model_parts(exp_nn, N=NULL, B=1, type = "difference")

# save binary versions just in case
save(exp_nn, exp_dt, exp_rf, exp_lm, file="models.RData")

Let's see performance

mp_all <- list(lm = mp_lm, dt = mp_dt, nn = mp_nn, rf = mp_rf)

R2   <- sapply(mp_all, function(x) x$measures$r2)
round(R2, 4)
#     lm     dt     nn     rf 
# 0.7290 0.7287 0.7290 0.7287 

rmse <- sapply(mp_all, function(x) x$measures$rmse)
round(rmse, 4)
#     lm     dt     nn     rf 
# 0.3535 0.3537 0.3535 0.3537

Let's see raw models

plot(model_dt)
summary(model_lm)
model_rf
plot(model_nn)

-------- LM
Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.01268    0.01114  -1.138    0.255    
x1           0.48481    0.03001  16.157  < 2e-16 ***
x2           0.14316    0.02966   4.826 1.61e-06 ***
x3          -0.03113    0.02980  -1.045    0.296    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.352 on 996 degrees of freedom
Multiple R-squared:  0.7268,	Adjusted R-squared:  0.726 
F-statistic: 883.4 on 3 and 996 DF,  p-value: < 2.2e-16

-------- RF
 randomForest(formula = y ~ ., data = train, ntree = 100) 
               Type of random forest: regression
                     Number of trees: 100
No. of variables tried at each split: 1

          Mean of squared residuals: 0.1182976
                    % Var explained: 73.81

Variable importance

plot(imp_dt, imp_nn, imp_rf, imp_lm)

Plot models

pd_dt <- model_profile(exp_dt, N=NULL)
pd_rf <- model_profile(exp_rf, N=NULL)
pd_lm <- model_profile(exp_lm, N=NULL)
pd_nn <- model_profile(exp_nn, N=NULL)

plot(pd_dt, pd_nn, pd_rf, pd_lm)

Plot data distribution

library("GGally")
both <- rbind(data.frame(train, label="train"),
              data.frame(test, label="test"))
ggpairs(both, aes(color=label),
        lower = list(continuous = wrap("points", alpha=0.2, size=1), 
                     combo = wrap("facethist", bins=25)),
        diag = list(continuous = wrap("densityDiag", alpha=0.5, bw="SJ"), 
                    discrete = "barDiag"),
        upper = list(continuous = wrap("cor", stars=FALSE))) 

Analysis of model residuals

The parallel coordinate plot depicts ranges for residuals for different models, one range per observation ordered along the mean value. The second panel shows between model averages and standard deviations for residuals, one point per observation. Following panels show the dendrogram and PCA for residuals.

Graphical summary

figures/rashomon4.png

Session info

> devtools::session_info()
─ Session info ──────────────────────────────────────────────────────────────────
 setting  value
 version  R version 4.2.2 (2022-10-31)
 os       macOS Monterey 12.5.1
 system   aarch64, darwin20
 ui       RStudio
 language (EN)
 collate  en_US.UTF-8
 ctype    en_US.UTF-8
 tz       Europe/Warsaw
 date     2023-02-24
 rstudio  2022.12.0+353 Elsbeth Geranium (desktop)
 pandoc   2.19.2 @ /Applications/RStudio.app/Contents/Resources/app/quarto/bin/tools/ (via rmarkdown)

─ Packages ──────────────────────────────────────────────────────────────────────
 package      * version    date (UTC) lib source
 backports      1.4.1      2021-12-13 [1] CRAN (R 4.2.0)
 base64enc      0.1-3      2015-07-28 [1] CRAN (R 4.2.0)
 bookdown       0.32       2023-01-17 [1] CRAN (R 4.2.0)
 cachem         1.0.6      2021-08-19 [1] CRAN (R 4.2.0)
 callr          3.7.3      2022-11-02 [1] CRAN (R 4.2.0)
 caret        * 6.0-93     2022-08-09 [1] CRAN (R 4.2.0)
 checkmate      2.1.0      2022-04-21 [1] CRAN (R 4.2.0)
 class          7.3-20     2022-01-16 [1] CRAN (R 4.2.2)
 cli            3.6.0      2023-01-09 [1] CRAN (R 4.2.0)
 cluster        2.1.4      2022-08-22 [1] CRAN (R 4.2.2)
 codetools      0.2-18     2020-11-04 [1] CRAN (R 4.2.2)
 colorspace     2.1-0      2023-01-23 [1] CRAN (R 4.2.0)
 crayon         1.5.2      2022-09-29 [1] CRAN (R 4.2.0)
 ctv            0.9-4      2022-11-06 [1] CRAN (R 4.2.0)
 DALEX        * 2.4.3      2023-01-15 [1] Github (ModelOriented/DALEX@478a19d)
 data.table     1.14.6     2022-11-16 [1] CRAN (R 4.2.0)
 deldir         1.0-6      2021-10-23 [1] CRAN (R 4.2.0)
 devtools       2.4.5      2022-10-11 [1] CRAN (R 4.2.0)
 digest         0.6.30     2022-10-18 [1] CRAN (R 4.2.0)
 dplyr          1.1.0      2023-01-29 [1] CRAN (R 4.2.0)
 ellipsis       0.3.2      2021-04-29 [1] CRAN (R 4.2.0)
 evaluate       0.18       2022-11-07 [1] CRAN (R 4.2.0)
 fansi          1.0.4      2023-01-22 [1] CRAN (R 4.2.0)
 farver         2.1.1      2022-07-06 [1] CRAN (R 4.2.0)
 fastmap        1.1.0      2021-01-25 [1] CRAN (R 4.2.0)
 foreach        1.5.2      2022-02-02 [1] CRAN (R 4.2.0)
 foreign        0.8-83     2022-09-28 [1] CRAN (R 4.2.2)
 Formula      * 1.2-4      2020-10-16 [1] CRAN (R 4.2.0)
 fs             1.6.1      2023-02-06 [1] CRAN (R 4.2.0)
 future         1.29.0     2022-11-06 [1] CRAN (R 4.2.0)
 future.apply   1.10.0     2022-11-05 [1] CRAN (R 4.2.0)
 generics       0.1.3      2022-07-05 [1] CRAN (R 4.2.0)
 ggplot2      * 3.4.0      2022-11-04 [1] CRAN (R 4.2.0)
 glmnet       * 4.1-6      2022-11-27 [1] CRAN (R 4.2.0)
 globals        0.16.2     2022-11-21 [1] CRAN (R 4.2.0)
 glue           1.6.2      2022-02-24 [1] CRAN (R 4.2.0)
 gower          1.0.1      2022-12-22 [1] CRAN (R 4.2.0)
 gridExtra      2.3        2017-09-09 [1] CRAN (R 4.2.0)
 gtable         0.3.1      2022-09-01 [1] CRAN (R 4.2.0)
 hardhat        1.2.0      2022-06-30 [1] CRAN (R 4.2.0)
 Hmisc        * 4.7-2      2022-11-18 [1] CRAN (R 4.2.0)
 htmlTable      2.4.1      2022-07-07 [1] CRAN (R 4.2.0)
 htmltools      0.5.3      2022-07-18 [1] CRAN (R 4.2.0)
 htmlwidgets    1.5.4      2021-09-08 [1] CRAN (R 4.2.0)
 httpuv         1.6.6      2022-09-08 [1] CRAN (R 4.2.0)
 ingredients    2.3.1      2023-01-15 [1] Github (ModelOriented/ingredients@a63c06c)
 interp         1.1-3      2022-07-13 [1] CRAN (R 4.2.0)
 inum           1.0-4      2021-04-12 [1] CRAN (R 4.2.0)
 ipred          0.9-13     2022-06-02 [1] CRAN (R 4.2.0)
 iterators      1.0.14     2022-02-05 [1] CRAN (R 4.2.0)
 jpeg           0.1-10     2022-11-29 [1] CRAN (R 4.2.0)
 knitr          1.41       2022-11-18 [1] CRAN (R 4.2.0)
 labeling       0.4.2      2020-10-20 [1] CRAN (R 4.2.0)
 later          1.3.0      2021-08-18 [1] CRAN (R 4.2.0)
 lattice      * 0.20-45    2021-09-22 [1] CRAN (R 4.2.2)
 latticeExtra   0.6-30     2022-07-04 [1] CRAN (R 4.2.0)
 lava           1.7.1      2023-01-06 [1] CRAN (R 4.2.0)
 libcoin      * 1.0-9      2021-09-27 [1] CRAN (R 4.2.0)
 lifecycle      1.0.3      2022-10-07 [1] CRAN (R 4.2.0)
 listenv        0.8.0      2019-12-05 [1] CRAN (R 4.2.0)
 lubridate      1.9.0      2022-11-06 [1] CRAN (R 4.2.0)
 magrittr       2.0.3      2022-03-30 [1] CRAN (R 4.2.0)
 MASS         * 7.3-58.1   2022-08-03 [1] CRAN (R 4.2.2)
 Matrix       * 1.5-3      2022-11-11 [1] CRAN (R 4.2.0)
 MatrixModels   0.5-1      2022-09-11 [1] CRAN (R 4.2.0)
 memoise        2.0.1      2021-11-26 [1] CRAN (R 4.2.0)
 mime           0.12       2021-09-28 [1] CRAN (R 4.2.0)
 miniUI         0.1.1.1    2018-05-18 [1] CRAN (R 4.2.0)
 ModelMetrics   1.2.2.2    2020-03-17 [1] CRAN (R 4.2.0)
 multcomp       1.4-20     2022-08-07 [1] CRAN (R 4.2.0)
 munsell        0.5.0      2018-06-12 [1] CRAN (R 4.2.0)
 mvtnorm      * 1.1-3      2021-10-08 [1] CRAN (R 4.2.0)
 neuralnet    * 1.44.2     2019-02-07 [1] CRAN (R 4.2.0)
 nlme           3.1-161    2022-12-15 [1] CRAN (R 4.2.0)
 nnet           7.3-18     2022-09-28 [1] CRAN (R 4.2.2)
 parallelly     1.32.1     2022-07-21 [1] CRAN (R 4.2.0)
 partykit     * 1.2-16     2022-06-20 [1] CRAN (R 4.2.0)
 patchwork    * 1.1.2      2022-08-19 [1] CRAN (R 4.2.0)
 pillar         1.8.1      2022-08-19 [1] CRAN (R 4.2.0)
 pkgbuild       1.4.0      2022-11-27 [1] CRAN (R 4.2.0)
 pkgconfig      2.0.3      2019-09-22 [1] CRAN (R 4.2.0)
 pkgload        1.3.2      2022-11-16 [1] CRAN (R 4.2.0)
 plyr           1.8.8      2022-11-11 [1] CRAN (R 4.2.0)
 png            0.1-8      2022-11-29 [1] CRAN (R 4.2.0)
 polspline      1.1.22     2022-11-23 [1] CRAN (R 4.2.0)
 prettyunits    1.1.1      2020-01-24 [1] CRAN (R 4.2.0)
 pROC           1.18.0     2021-09-03 [1] CRAN (R 4.2.0)
 processx       3.8.0      2022-10-26 [1] CRAN (R 4.2.0)
 prodlim        2019.11.13 2019-11-17 [1] CRAN (R 4.2.0)
 profvis        0.3.7      2020-11-02 [1] CRAN (R 4.2.0)
 promises       1.2.0.1    2021-02-11 [1] CRAN (R 4.2.0)
 ps             1.7.2      2022-10-26 [1] CRAN (R 4.2.0)
 purrr          1.0.1      2023-01-10 [1] CRAN (R 4.2.0)
 quantreg       5.94       2022-07-20 [1] CRAN (R 4.2.0)
 R6             2.5.1      2021-08-19 [1] CRAN (R 4.2.0)
 randomForest * 4.7-1.1    2022-05-23 [1] CRAN (R 4.2.0)
 RColorBrewer   1.1-3      2022-04-03 [1] CRAN (R 4.2.0)
 Rcpp           1.0.10     2023-01-22 [1] CRAN (R 4.2.0)
 recipes        1.0.4      2023-01-11 [1] CRAN (R 4.2.0)
 remotes        2.4.2      2021-11-30 [1] CRAN (R 4.2.0)
 reshape2       1.4.4      2020-04-09 [1] CRAN (R 4.2.0)
 rlang          1.0.6      2022-09-24 [1] CRAN (R 4.2.0)
 rmarkdown      2.18       2022-11-09 [1] CRAN (R 4.2.0)
 rms          * 6.3-0      2022-04-22 [1] CRAN (R 4.2.0)
 rpart        * 4.1.19     2022-10-21 [1] CRAN (R 4.2.0)
 rstudioapi     0.14       2022-08-22 [1] CRAN (R 4.2.0)
 sandwich       3.0-2      2022-06-15 [1] CRAN (R 4.2.0)
 scales         1.2.1      2022-08-20 [1] CRAN (R 4.2.0)
 sessioninfo    1.2.2      2021-12-06 [1] CRAN (R 4.2.0)
 shape          1.4.6      2021-05-19 [1] CRAN (R 4.2.0)
 shiny          1.7.3      2022-10-25 [1] CRAN (R 4.2.0)
 SparseM      * 1.81       2021-02-18 [1] CRAN (R 4.2.0)
 stringi        1.7.12     2023-01-11 [1] CRAN (R 4.2.0)
 stringr        1.5.0      2022-12-02 [1] CRAN (R 4.2.0)
 survival     * 3.4-0      2022-08-09 [1] CRAN (R 4.2.2)
 TH.data        1.1-1      2022-04-26 [1] CRAN (R 4.2.0)
 tibble         3.1.8      2022-07-22 [1] CRAN (R 4.2.0)
 tidyselect     1.2.0      2022-10-10 [1] CRAN (R 4.2.0)
 timechange     0.2.0      2023-01-11 [1] CRAN (R 4.2.0)
 timeDate       4022.108   2023-01-07 [1] CRAN (R 4.2.0)
 urlchecker     1.0.1      2021-11-30 [1] CRAN (R 4.2.0)
 usethis        2.1.6      2022-05-25 [1] CRAN (R 4.2.0)
 utf8           1.2.3      2023-01-31 [1] CRAN (R 4.2.0)
 vctrs          0.5.2      2023-01-23 [1] CRAN (R 4.2.0)
 withr          2.5.0      2022-03-03 [1] CRAN (R 4.2.0)
 xfun           0.37       2023-01-31 [1] CRAN (R 4.2.0)
 xtable         1.8-4      2019-04-21 [1] CRAN (R 4.2.0)
 yaml           2.3.7      2023-01-23 [1] CRAN (R 4.2.0)
 zoo            1.8-11     2022-09-17 [1] CRAN (R 4.2.0)