-
Notifications
You must be signed in to change notification settings - Fork 134
/
pgd_attack.py
121 lines (94 loc) · 3.9 KB
/
pgd_attack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
"""
Implementation of attack methods. Running this file as a program will
apply the attack to the model specified by the config file and store
the examples in an .npy file.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import numpy as np
import cifar10_input
class LinfPGDAttack:
def __init__(self, model, epsilon, num_steps, step_size, random_start, loss_func):
"""Attack parameter initialization. The attack performs k steps of
size a, while always staying within epsilon from the initial
point."""
self.model = model
self.epsilon = epsilon
self.num_steps = num_steps
self.step_size = step_size
self.rand = random_start
if loss_func == 'xent':
loss = model.xent
elif loss_func == 'cw':
label_mask = tf.one_hot(model.y_input,
10,
on_value=1.0,
off_value=0.0,
dtype=tf.float32)
correct_logit = tf.reduce_sum(label_mask * model.pre_softmax, axis=1)
wrong_logit = tf.reduce_max((1-label_mask) * model.pre_softmax - 1e4*label_mask, axis=1)
loss = -tf.nn.relu(correct_logit - wrong_logit + 50)
else:
print('Unknown loss function. Defaulting to cross-entropy')
loss = model.xent
self.grad = tf.gradients(loss, model.x_input)[0]
def perturb(self, x_nat, y, sess):
"""Given a set of examples (x_nat, y), returns a set of adversarial
examples within epsilon of x_nat in l_infinity norm."""
if self.rand:
x = x_nat + np.random.uniform(-self.epsilon, self.epsilon, x_nat.shape)
x = np.clip(x, 0, 255) # ensure valid pixel range
else:
x = x_nat.astype(np.float)
for i in range(self.num_steps):
grad = sess.run(self.grad, feed_dict={self.model.x_input: x,
self.model.y_input: y})
x = np.add(x, self.step_size * np.sign(grad), out=x, casting='unsafe')
x = np.clip(x, x_nat - self.epsilon, x_nat + self.epsilon)
x = np.clip(x, 0, 255) # ensure valid pixel range
return x
if __name__ == '__main__':
import json
import sys
import math
from model import Model
with open('config.json') as config_file:
config = json.load(config_file)
model_file = tf.train.latest_checkpoint(config['model_dir'])
if model_file is None:
print('No model found')
sys.exit()
model = Model(mode='eval')
attack = LinfPGDAttack(model,
config['epsilon'],
config['num_steps'],
config['step_size'],
config['random_start'],
config['loss_func'])
saver = tf.train.Saver()
data_path = config['data_path']
cifar = cifar10_input.CIFAR10Data(data_path)
with tf.Session() as sess:
# Restore the checkpoint
saver.restore(sess, model_file)
# Iterate over the samples batch-by-batch
num_eval_examples = config['num_eval_examples']
eval_batch_size = config['eval_batch_size']
num_batches = int(math.ceil(num_eval_examples / eval_batch_size))
x_adv = [] # adv accumulator
print('Iterating over {} batches'.format(num_batches))
for ibatch in range(num_batches):
bstart = ibatch * eval_batch_size
bend = min(bstart + eval_batch_size, num_eval_examples)
print('batch size: {}'.format(bend - bstart))
x_batch = cifar.eval_data.xs[bstart:bend, :]
y_batch = cifar.eval_data.ys[bstart:bend]
x_batch_adv = attack.perturb(x_batch, y_batch, sess)
x_adv.append(x_batch_adv)
print('Storing examples')
path = config['store_adv_path']
x_adv = np.concatenate(x_adv, axis=0)
np.save(path, x_adv)
print('Examples stored in {}'.format(path))