-
Notifications
You must be signed in to change notification settings - Fork 0
/
13_Attention_CUDNNGRU_bidirectional.py
294 lines (229 loc) · 10.3 KB
/
13_Attention_CUDNNGRU_bidirectional.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
"""
Created on Sun Jan 6 12:11:28 2019
@author: Muhammed Buyukkinaci
"""
import numpy as np
import pandas as pd
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.text import text_to_word_sequence
import os
from tqdm import tqdm
import re
from keras.preprocessing.sequence import pad_sequences
import tensorflow as tf
from datetime import datetime
#Always seed the randomness of this universe.
np.random.seed(51)
#Define HyperParameters
MAX_WORD_TO_USE = 100000 # how many words to use in training
MAX_LEN = 80 # number of time-steps.
EMBED_SIZE = 100 #GLoVe 100-D
batchSize = 128 # how many samples to feed neural network
GRU_UNITS = 256 # Number of nodes in GRU Layer
attention_size = 64 # how many nodes in attention layer
numClasses = 2 #{Positive,Negative}
iterations = 100000 # How many iterations to train
nodes_on_FC = 64 # Number of nodes on FC layer
epsilon = 1e-4# For batch normalization
val_loop_iter = 50 # in how many iters we record
#Reading csv's
train = pd.read_csv('dataset/train_amazon.csv')
test = pd.read_csv('dataset/test_amazon.csv')
#Removing punctuations
#Converting to Lowercase and cleaning punctiations
train['text'] = train['text'].apply(lambda x: ' '.join( text_to_word_sequence(x) ) )
test['text'] = test['text'].apply(lambda x: ' '.join( text_to_word_sequence(x) ) )
def remove_numbers(x):
x = re.sub('[0-9]{5,}', '#####', x)
x = re.sub('[0-9]{4}', '####', x)
x = re.sub('[0-9]{3}', '###', x)
x = re.sub('[0-9]{2}', '##', x)
return x
#Removing Numbers
train['text'] = train['text'].apply(lambda x: remove_numbers(x) )
test['text'] = test['text'].apply(lambda x: remove_numbers(x) )
## Tokenize the sentences
tokenizer = Tokenizer(num_words=MAX_WORD_TO_USE)
tokenizer.fit_on_texts(list(train['text']))
train_X = tokenizer.texts_to_sequences(train['text'])
test_X = tokenizer.texts_to_sequences(test['text'])
## Pad the sentences
train_X = pad_sequences(train_X, maxlen=MAX_LEN)
test_X = pad_sequences(test_X, maxlen=MAX_LEN)
#Converting target to one-hot format
train_y = pd.get_dummies(train['label']).values
test_y = pd.get_dummies(test['label']).values
#words_dict is a dictionary like this:
#words_dict = {'the':5,'among':20,'interest':578}
#words_dict includes words and their corresponding numbers.
words_dict = tokenizer.word_index
#Present working directory
working_dir = os.getcwd()
EMBEDDING_FILE = 'glove.6B.{}d.txt'.format(EMBED_SIZE)
def get_coefs(word,*arr):
"""
Reading word embedding
from: https://www.kaggle.com/shujian/single-rnn-with-4-folds-clr
"""
return word, np.asarray(arr, dtype='float32')
embeddings_index = dict(get_coefs(*o.split(" ")) for o in open(os.path.join(working_dir,EMBEDDING_FILE) ))
print("There are {} words in our Word Embeddings file".format(len(embeddings_index)))
all_embs = np.stack(embeddings_index.values())
#Calculating mean and std to fill embedding matrix
emb_mean,emb_std = all_embs.mean(), all_embs.std()
embed_size = all_embs.shape[1]
#Choosing how many words to use in the embedding matrix
nb_words = min(MAX_WORD_TO_USE, len(words_dict))
#Creating a random Embedding Matrix to fill later
embedding_matrix = np.random.normal(emb_mean, emb_std, (nb_words, embed_size))
#Filling out randomly created embedding matrix with true values.
for word, i in words_dict.items():
if i >= MAX_WORD_TO_USE:
continue
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector
#Converting float64 to float32 for convenience
embedding_matrix = embedding_matrix.astype('float32')
#Resetting the graph
tf.reset_default_graph()
#Seed the randomness
tf.set_random_seed(51)
#Defining Placeholders
input_data = tf.placeholder(tf.int32, [batchSize, MAX_LEN])
y_true = tf.placeholder(tf.float32, [batchSize, numClasses])
hold_prob1 = tf.placeholder(tf.float32)
#Creating our Embedding matrix
data = tf.nn.embedding_lookup(embedding_matrix,input_data)
print(data.get_shape().as_list())
data = tf.transpose(data, [1, 0, 2])
print(data.get_shape().as_list())
#Defining Bidirectional CudnnGRU Layer
GRU_CELL = tf.contrib.cudnn_rnn.CudnnGRU(num_layers=1,num_units=GRU_UNITS,
bias_initializer = tf.constant_initializer(0.1),
kernel_initializer=tf.keras.initializers.glorot_normal(),dropout=0.2,
direction='bidirectional')
"""
#For stacked (more than 1 layer) GRU architecture
GRU_CELL = tf.contrib.cudnn_rnn.CudnnGRU(num_layers=2,num_units=GRU_UNITS,
bias_initializer = tf.constant_initializer(0.1),
kernel_initializer=tf.keras.initializers.glorot_normal(),dropout=0.2,
direction='bidirectional')
"""
value, _ = GRU_CELL(inputs= data)
print("Shape of value = ",value.get_shape().as_list())
##Attention Layer##
"""
Derivated
from :https://github.com/TobiasLee/Text-Classification/blob/master/models/modules/attention.py
"""
time_major=True
return_alphas=False
bidirectional_existing =True
weight_in_att = tf.Variable(tf.truncated_normal([GRU_UNITS*2, attention_size],stddev=0.1))
bias_in_att = tf.Variable(tf.constant(0.1, shape=[attention_size]))
weight_out_att = tf.Variable(tf.truncated_normal([attention_size],stddev=0.1))
#Concating if bidirectional exists
if bidirectional_existing:
value = tf.concat(value, 2)
#Changing the shape
if time_major:
value = tf.transpose(value, [1, 0, 2])
#Attention calculations
v = tf.tanh(tf.tensordot(value, weight_in_att, axes=1) + bias_in_att)
vu = tf.tensordot(v, weight_out_att, axes=1)
alphas = tf.nn.softmax(vu)
temp = value * tf.expand_dims(alphas, -1)
# Output of (Bi-)RNN is reduced with attention vector; the result has (B,D) shape
output = tf.reduce_sum(temp, 1)
print(output.get_shape().as_list())
#Defining weights and biases for 1 st Fully Connected part of NN
weight_fc1 = tf.Variable(tf.truncated_normal([GRU_UNITS*2, nodes_on_FC]))
bias_fc1 = tf.Variable(tf.constant(0.1, shape=[nodes_on_FC]))
#Defining 1st FC layer
y_pred_without_BN = tf.matmul(output, weight_fc1) + bias_fc1
#calculating batch_mean and batch_variance
batch_mean, batch_var = tf.nn.moments(y_pred_without_BN,[0])
#Creating parameters for Batch normalization
scale = tf.Variable(tf.ones([nodes_on_FC]))
beta = tf.Variable(tf.zeros([nodes_on_FC]))
#Implementing batch normalization
y_pred_without_activation = tf.nn.batch_normalization(y_pred_without_BN,batch_mean,batch_var,beta,scale,epsilon)
#Applying RELU
y_pred_with_activation = tf.nn.relu(y_pred_without_activation)
#Dropout Layer 1
y_pred_with_dropout = tf.nn.dropout(y_pred_with_activation,keep_prob=hold_prob1)
#Defining weights and biases for 1 st Fully Connected part of NN
weight_output_layer = tf.Variable(tf.truncated_normal([nodes_on_FC, numClasses]))
bias_output_layer = tf.Variable(tf.constant(0.1, shape=[numClasses]))
#Calculating last layer of NN, without any activation
y_pred = tf.matmul(y_pred_with_dropout, weight_output_layer) + bias_output_layer
#Defining Accuracy
matches = tf.equal(tf.argmax(y_pred,1),tf.argmax(y_true,1))
acc = tf.reduce_mean(tf.cast(matches,tf.float32))
#Defining Loss Function
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_true,logits=y_pred))
#Defining objective
training = tf.train.RMSPropOptimizer(learning_rate=0.0001).minimize(cross_entropy)
##Initializing trainable/non-trainable variables
init = tf.global_variables_initializer()
#Creating a tf.train.Saver() object to keep records
saver = tf.train.Saver()
#Defining a function for early stopping
def early_stopping_check(x):
if np.mean(x[-20:]) <= np.mean(x[-80:]):
return True
else:
return False
#GPU settings
config = tf.ConfigProto(allow_soft_placement=True)
config.gpu_options.allow_growth = True
config.gpu_options.allocator_type = 'BFC'
#Opening up Session
with tf.Session(config=config) as sess:
#Running init
sess.run(init)
#For TensorBoard
"""
The 5 line below taken from:
https://github.com/adeshpande3/LSTM-Sentiment-Analysis/blob/master/Oriole%20LSTM.ipynb
"""
tf.summary.scalar('Loss', cross_entropy)
tf.summary.scalar('Accuracy', acc)
merged = tf.summary.merge_all()
logdir_train = "tensorboard/" + datetime.now().strftime("%Y%m%d-%H%M%S") + "/" + 'train'
logdir_cv = "tensorboard/" + datetime.now().strftime("%Y%m%d-%H%M%S") + "/" + 'cv'
writer_train = tf.summary.FileWriter(logdir_train, sess.graph)
writer_cv = tf.summary.FileWriter(logdir_cv, sess.graph)
#Creating a list for Early Stopping
val_scores_loss= []
#Main loop
for i in range(iterations):
random_numbers = np.random.randint(0,len(train_X),batchSize)
_,c = sess.run([training,cross_entropy] ,feed_dict = {input_data : train_X[random_numbers],\
y_true : train_y[random_numbers], hold_prob1:0.8} )
#Validating Loop
if i % val_loop_iter == 0:
random_numbers_cv = np.random.randint(0,len(test_X),batchSize)
#Getting validation stats.
acc_cv,loss_cv,summary_cv = sess.run([acc,cross_entropy,merged],\
feed_dict = {input_data:test_X[random_numbers_cv],y_true:test_y[random_numbers_cv],hold_prob1:1.0})
#Getting train stats.
acc_tr,loss_tr,summary_tr = sess.run([acc,cross_entropy,merged],\
feed_dict={input_data:train_X[random_numbers],y_true:train_y[random_numbers],hold_prob1:1.0})
#Appending loss_cv to val_scores:
val_scores_loss.append(loss_cv)
#Adding results for TensorBoard
writer_train.add_summary(summary_tr, i)
writer_train.flush()
writer_cv.add_summary(summary_cv, i)
writer_cv.flush()
#Printing on each 1000 iterations
if i%1000 ==0:
print("Training : Iter = {}, Train Loss = {}, Train Accuracy = {}".format(i,loss_tr,acc_tr))
print("Validation: Iter = {}, CV Loss = {}, CV Accuracy = {}".format(i,loss_cv,acc_cv))
#If validation loss didn't decrease for val_loop_iter * 20 iters, stop.
if early_stopping_check(val_scores_loss) == False:
saver.save(sess, os.path.join(os.getcwd(),"1_layered_GRU.ckpt"),global_step=i)
break
print("Training has finished")