(New to open-source? Here's a guide to help you)
- Have a Question?
- Found a Bug?
- Have a Feature Request?
- Ready to Contribute!
- Create an issue
- Installation
- Tests
- Stress your computer
- Versioning
- Debug in VS Code
- Local deployment
- CSV Dashboard
- API Dashboard
Please see the FAQ for questions.
If you've identified a bug in codecarbon
, please submit an issue to the GitHub repo: mlco2/codecarbon. Please also feel free to submit a PR with a fix for the bug!
Feel free to describe your request by submitting an issue documenting the feature (with its intent) and a PR with a proposed implementation of the feature.
Before submitting a new issue, please search the issues to make sure there isn't a similar issue already. New issues can be created with in the GitHub repo.
CodeCarbon is a Python package, to contribute to it, you need to have Python installed on your machine, natively or with Conda.
Since April 2024 we use Hatch for managing development environment. Hatch manage the environments, even the Python versions, the dependencies and handle matrix testing. It is a good way to avoid conflicts with your system Python.
We have dropped support of Python 3.6 since version 2.0.0 of CodeCarbon.
It is not mandatory for small contribution, while not recommanded, you could just install the package with pip install -e .
.
Please install Hatch following installation instruction, or with pipx install hatch hatch-pip-compile
.
Then, clone the repository and create the environment with:
git clone https://github.com/mlco2/codecarbon.git
cd codecarbon
hatch env create
Note: this
hatch env create
command will usevenv
+ the normal python resolution to get the Python version. If you want to use a specific Python version, you can doexport HATCH_PYTHON=path/to/your/bin/python
before runninghatch env create
.
View the options of CodeCarbon environments:
❯ hatch env show
Standalone
┏━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓
┃ Name ┃ Type ┃ Features ┃ Dependencies ┃ Scripts ┃
┡━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩
│ default │ pip-compile │ │ │ │
├─────────────┼─────────────┼──────────┼───────────────────────────┼───────────────────┤
│ carbonboard │ pip-compile │ viz │ │ run │
├─────────────┼─────────────┼──────────┼───────────────────────────┼───────────────────┤
│ docs │ virtual │ │ sphinx │ build │
│ │ │ │ sphinx-rtd-theme │ │
├─────────────┼─────────────┼──────────┼───────────────────────────┼───────────────────┤
│ dev │ pip-compile │ │ black │ format │
│ │ │ │ mypy │ lint │
│ │ │ │ pre-commit │ mypy-check │
│ │ │ │ ruff │ precommit │
│ │ │ │ │ precommit-install │
│ │ │ │ │ precommit-update │
├─────────────┼─────────────┼──────────┼───────────────────────────┼───────────────────┤
│ dashboard │ pip-compile │ │ dash-bootstrap-components │ run │
│ │ │ │ dash>=2.2.0 │ │
│ │ │ │ plotly>=5.6.0 │ │
├─────────────┼─────────────┼──────────┼───────────────────────────┼───────────────────┤
│ api │ pip-compile │ │ alembic<2.0.0 │ docker │
│ │ │ │ bcrypt<5.0.0 │ local │
│ │ │ │ dependency-injector<5.0.0 │ server-ci │
│ │ │ │ fastapi-pagination<1.0.0 │ setup-db │
│ │ │ │ fastapi<1.0.0 │ test-integ │
│ │ │ │ httpx │ test-unit │
│ │ │ │ mock │ │
│ │ │ │ numpy │ │
│ │ │ │ psutil │ │
│ │ │ │ psycopg2-binary<3.0.0 │ │
│ │ │ │ pydantic[email]<2.0.0 │ │
│ │ │ │ pytest │ │
│ │ │ │ python-dateutil<3.0.0 │ │
│ │ │ │ rapidfuzz │ │
│ │ │ │ requests-mock │ │
│ │ │ │ requests<3.0.0 │ │
│ │ │ │ responses │ │
│ │ │ │ sqlalchemy<2.0.0 │ │
│ │ │ │ uvicorn[standard]<1.0.0 │ │
└─────────────┴─────────────┴──────────┴───────────────────────────┴───────────────────┘
Matrices
┏━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ Name ┃ Type ┃ Envs ┃ Features ┃ Dependencies ┃ Scripts ┃
┡━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
│ test │ pip-compile │ test.py3.8 │ viz │ mock │ package │
│ │ │ test.py3.9 │ │ numpy │ package-integ │
│ │ │ test.py3.10 │ │ psutil │ │
│ │ │ test.py3.11 │ │ pytest │ │
│ │ │ test.py3.12 │ │ rapidfuzz │ │
│ │ │ │ │ requests-mock │ │
│ │ │ │ │ responses │ │
└──────┴─────────────┴─────────────┴──────────┴───────────────┴───────────────┘
To know the path of a env :
hatch env find dev
To delete all your env :
hatch env prune
You can run the unit tests by running Hatch in the terminal when in the root package directory:
hatch run test:package
To avoid testing all Python version, you could specify it, for example for Python 3.11 :
hatch run +py=3.11 test:package
This will not run test that may fail because of your environment (no CO2 Signal API token, no PowerGadget...). If you want to run all package tests:
hatch run test:package-integ
You can also run your specific test in isolation to develop and debug them:
$ hatch -e test.py3.11 run pytest tests/test_cloud.py
# or
$ hatch -e test.py3.11 run python -m unittest tests.test_your_feature.YourTestCase.test_function
For example : hatch -e test.py3.11 run python -m unittest tests.test_energy.TestEnergy.test_wraparound_delta_correct_value
To test the API, see how to deploy it first.
Core and external classes are unit tested, with one test file per class. Most pull requests are expected to contain either new tests or test updates. If you are unusure what to test / how to test it, please put it in the pull request description and the maintainers will help you.
To test CodeCarbon, it is useful to stress your computer to make it use its full power:
- 7Zip is often already installed, running it with
7z b
makes a quick CPU test. - GPU-burn will load test the GPU for a configurable duration.
nvidia-smi
is a useful tool to see the metrics of the GPU and compare it with CodeCarbon.
pipx install hatch-pip-compile
hatch-pip-compile --upgrade --all
To add a new feature to codecarbon, apply the following workflow:
- Master branch is protected
- To contribute to an already prioritized feature, you can create a branch from master and open a draft PR
- Documenting the intent & the limits of a contribution in a dedicated issue or in the pull request helps the review
- Once automated tests pass, the PR is reviewed and merged by the repository maintainers
Here is the launch.json to be able to debug examples and tests:
{
"version": "0.2.0",
"configurations": [
{
"name": "Python: Current File",
"type": "python",
"request": "launch",
"program": "${file}",
"console": "integratedTerminal",
"justMyCode": true,
"env": { "PYTHONPATH": "${workspaceRoot}" }
},
{
"name": "PyTest: Current File",
"type": "python",
"request": "launch",
"module": "pytest",
"args": ["${file}"],
"console": "integratedTerminal",
"justMyCode": true,
"env": { "PYTHONPATH": "${workspaceRoot}" }
}
]
}
Then run opened test with this button:
To run locally the dashboard application, you can use it out on a sample data file such as the one in examples/emissions.csv
, and run it with the following command from the code base:
hatch run carbonboard:run --filepath="examples/emissions.csv"
# or
pip install codecarbon["viz"]
python codecarbon/viz/carbonboard.py --filepath="examples/emissions.csv"
If you have the package installed, you can run the CLI command:
carbonboard --filepath="examples/emissions.csv" --port=8050
To test the new dashboard that uses the API, run:
hatch run dashboard:run
Then, click on the url displayed in the terminal.
By default, the dashboard is connected to the production API, to connect it to your local API, you can set the environment variable CODECARBON_API_URL
to http://localhost:8008
:
export CODECARBON_API_URL=http://localhost:8008
hatch run dashboard:run
The easiest way to run the API locally is with Docker, it will set-up the Postgres database for you. Launch this command in the project directory:
hatch run api:docker
# or
docker-compose up -d
Please see Docker specific documentation for more informations. When up, the API documentation is available locally at the following URL: http://localhost:8008/redoc and can be used for testing.
If you want to run the API without Docker, you can run the following commands:
hatch run api:local
In order to make codecarbon automatically connect to the local API, create a file .codecarbon.config
with contents:
[codecarbon]
api_endpoint = http://localhost:8008
Before using it, you need an experiment_id, to get one, run:
codecarbon init
It will ask the API for an experiment_id on the default project and save it to .codecarbon.config
for you.
Then you could run an example:
python examples/api_call_debug.py
📝 Edit the line occurence = 60 * 24 * 365 * 100
to specify the number of minutes you want to run it.
To test the API, you can use the following command:
hatch run api:test-unit
export CODECARBON_API_URL=http://localhost:8008
hatch run api:test-integ
The coding style and linting rules are automatically applied and enforced by pre-commit. This tool helps to maintain the same code style across the code-base such to ease the review and collaboration process. Once installed (https://pre-commit.com/#installation), you can install a Git hook to automatically run pre-commit (and all configured linters/auto-formatters) before doing a commit with hatch run dev:precommit-install
. Then once you tried to commit, the linters/formatters will run automatically. It should display something similar to:
[INFO] Initializing environment for https://github.com/psf/black.
[INFO] Initializing environment for https://gitlab.com/pycqa/flake8.
[INFO] Installing environment for https://github.com/psf/black.
[INFO] Once installed this environment will be reused.
[INFO] This may take a few minutes...
[INFO] Installing environment for https://gitlab.com/pycqa/flake8.
[INFO] Once installed this environment will be reused.
[INFO] This may take a few minutes...
seed isort known_third_party.............................................Passed
isort....................................................................Failed
- hook id: isort
- files were modified by this hook
Fixing codecarbon/__init__.py
black....................................................................Passed
flake8...................................................................Passed
If any of the linters/formatters fail, check the difference with git diff
, add the differences if there is no behavior changes (isort and black might have change some coding style or import order, this is expected it is their job) with git add
and finally try to commit again git commit ...
.
You can also run pre-commit
with pre-commit run -v
if you have some changes staged but you are not ready yet to commit.
It's nice to keep it up-to-date with hatch run dev:precommit-update
sometimes.
Dependencies are defined in different places:
- In pyproject.toml, those are all the dependencies.
- In requirements.txt and requirements/, those are locked dependencies managed by Hatch plugin pip-compile, do not edit them.
- In .conda/meta.yaml, those are the dependencies for the Conda pacakge targeting Python 3.7 and higher versions.
You have a cool idea, but do not know know if it fits with Code Carbon? You can create an issue to share:
- the code, via the Github repo or Binder, to share executable notebooks
- a webapp, using Voilà, Dash or Streamlit
- ideas for improvement about the tool or its documentation
No software is complete without great documentation!
To make generating documentation easier, we use sphinx
package.
In order to make changes, edit the .rst
files that are in the /docs/edit
folder, and then run:
hatch run docs:build
to regenerate the html files.
- Merge all PRs.
- Create a PR bumping the version with
hatch version minor
. - Run
python3 .github/check_version.py
to check version consistancy. - Update the dependencies with
hatch-pip-compile --upgrade --all
. - Build Documentation if needed with
hatch run docs:build
. - Merge the PR.
- Wait for the Github Action
ReleaseDrafter
to finish running on the merge commit. - Edit the Draft release on Github and give it a tag,
v1.0.0
for the version 1.0.0. Github will automatically create a Git tag for it. Complete help here. - A Github Action Upload Python Package will be run automaticaly to upload the package.
- For conda, we now have a feedstock to publish to Conda-Forge channel.
If you still want to publish to the Anaconda CodeCarbon channel:
Start a Docker image in the same directory and bind-mount the current directory with:
docker run -ti --rm=true -v $PWD:/data continuumio/anaconda3
.
Inside the docker container, run:
conda install -y conda-build conda-verify conda-forge::hatchling
cd /data && mkdir -p /conda_dist
conda build --python 3.11 .conda/ -c conda-forge --output-folder /conda_dist
anaconda upload --user codecarbon /conda_dist/noarch/codecarbon-*.tar.bz2
docker cp postgresql_*.dump postgres_codecarbon:/tmp
docker exec -it postgres_codecarbon bash
export BACKUP_USER=upwnpbdktjvnoks0foxq
export BACKUP_DB=bnrwiktgr4hzukt1xseg
psql -U $POSTGRES_USER -d $POSTGRES_DB -c "CREATE USER $BACKUP_USER WITH PASSWORD '$POSTGRES_PASSWORD';"
psql -U $POSTGRES_USER -d $POSTGRES_DB -c "ALTER USER $BACKUP_USER CREATEDB;"
createdb -U $BACKUP_USER $BACKUP_DB
psql -U $BACKUP_USER -d $POSTGRES_DB -c "CREATE DATABASE $BACKUP_DB;"
pg_restore -d $BACKUP_DB -U $BACKUP_USER --jobs=8 --clean --create /tmp/postgresql_*.dump
psql -U $BACKUP_USER -d $BACKUP_DB -c "GRANT ALL PRIVILEGES ON ALL SEQUENCES IN SCHEMA public TO \"$POSTGRES_USER\";"
psql -U $POSTGRES_USER -d $BACKUP_DB -c "ALTER DATABASE $POSTGRES_DB RENAME TO \"$POSTGRES_DB-backup\";"
psql -U $BACKUP_USER -d $POSTGRES_DB-backup -c "ALTER DATABASE $BACKUP_DB RENAME TO $POSTGRES_DB;"
#### Clean the database
To remove orphans (elements without run) from the database, run:
CALL public.spcc_purgeduplicatedata();
The API is availiable to everyone from https://api.codecarbon.io, but if you want to deploy it for yourself, here are the instructions.
To deploy the API we use Clever Cloud, an IT Automation platform. They manage all the hard ops work while we focus on the Code Carbon value.
Here is the Clever Cloud configuration if you want to reproduce it:
APP_FOLDER="carbonserver"
CC_PIP_REQUIREMENTS_FILE="requirements.txt"
CC_POST_BUILD_HOOK="cd $APP_HOME/carbonserver && python3 -m alembic -c carbonserver/database/alembic.ini upgrade head"
CC_PYTHON_BACKEND="uvicorn"
CC_PYTHON_MODULE="main:app"
CC_PYTHON_VERSION="3.8"
DATABASE_URL="postgresql://secret_do_not_publish_this"
PORT="8080"
CC stand here for Clever Cloud, not Code Carbon 😉
To deploy,
git remote add deploy git+ssh://[email protected]/app_<secret_do_not_share>.git
git push deploy master:master
Yeah, not so hard, is it?
See (the doc)[https://www.clever-cloud.com/doc/getting-started/quickstart/] for more informations.
Please note that Clever Cloud host Code Carbon for free because they like our project.
Same as for the API, for example to deploy the branh fix-unit
to CleverCloud:
git push clever-dashboard fix-unit:master
Config on CleverCloud:
APP_FOLDER="dashboard"
CC_PIP_REQUIREMENTS_FILE="requirements-dashboard.txt"
CC_PYTHON_MODULE="carbon_board_API:server"
CC_PYTHON_VERSION="3.8"
CODECARBON_API_URL="https://api.codecarbon.io"
PORT="8000"
By contributing your code, you agree to license your contribution under the terms of the MIT License.
All files are released with the MIT license.