HarDNet(Harmonic DenseNet)是 2019 年由国立清华大学提出的一种全新的神经网络,在低 MAC 和内存流量的条件下实现了高效率。与 FC-DenseNet-103,DenseNet-264,ResNet-50,ResNet-152 和 SSD-VGG 相比,新网络的推理时间减少了 35%,36%,30%,32% 和 45%。我们使用了包括 Nvidia Profiler 和 ARM Scale-Sim 在内的工具来测量内存流量,并验证推理延迟确实与内存流量消耗成正比,并且所提议的网络消耗的内存流量很低。论文地址。
Models | Top1 | Top5 | Reference top1 |
Reference top5 |
FLOPs (G) |
Params (M) |
---|---|---|---|---|---|---|
HarDNet68 | 75.46 | 92.65 | - | - | 4.3 | 17.6 |
HarDNet85 | 77.44 | 93.55 | - | - | 9.1 | 36.7 |
HarDNet39_ds | 71.33 | 89.98 | - | - | 0.4 | 3.5 |
HarDNet68_ds | 73.62 | 91.52 | - | - | 0.8 | 4.2 |
备注: PaddleClas 所提供的该系列模型的预训练模型权重,均是基于其官方提供的权重转得。
Models | Size | Latency(ms) bs=1 |
Latency(ms) bs=4 |
Latency(ms) bs=8 |
---|---|---|---|---|
HarDNet68 | 224 | 2.97 | 4.12 | 6.05 |
HarDNet85 | 224 | 4.67 | 7.17 | 10.85 |
HarDNet39_ds | 224 | 1.12 | 1.54 | 2.00 |
HarDNet68_ds | 224 | 1.88 | 2.56 | 3.37 |
备注: 精度类型为 FP32,推理过程使用 TensorRT-8.0.3.4。
安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考ResNet50 模型快速体验。
此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在 ppcls/configs/ImageNet/HarDNet/
中提供了该模型的训练配置,启动训练方法可以参考:ResNet50 模型训练、评估和预测。
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考Paddle Inference官网教程。
Inference 的获取可以参考 ResNet50 推理模型准备 。
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考ResNet50 基于 Python 预测引擎推理 完成模型的推理预测。
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考服务器端 C++ 预测来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考基于 Visual Studio 2019 Community CMake 编译指南完成相应的预测库编译和模型预测工作。
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考Paddle Serving 代码仓库。
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考模型服务化部署来完成相应的部署工作。
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考Paddle Lite 代码仓库。
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考端侧部署来完成相应的部署工作。
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考Paddle2ONNX 代码仓库。
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考Paddle2ONNX 模型转换与预测来完成相应的部署工作。