-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
cosmargin.py
57 lines (46 loc) · 1.97 KB
/
cosmargin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# reference: https://arxiv.org/abs/1801.09414
import paddle
import math
import paddle.nn as nn
class CosMargin(paddle.nn.Layer):
def __init__(self, embedding_size, class_num, margin=0.35, scale=64.0):
super(CosMargin, self).__init__()
self.scale = scale
self.margin = margin
self.embedding_size = embedding_size
self.class_num = class_num
self.weight = self.create_parameter(
shape=[self.embedding_size, self.class_num],
is_bias=False,
default_initializer=paddle.nn.initializer.XavierNormal())
def forward(self, input, label):
label.stop_gradient = True
input_norm = paddle.sqrt(
paddle.sum(paddle.square(input), axis=1, keepdim=True))
input = paddle.divide(input, input_norm)
weight_norm = paddle.sqrt(
paddle.sum(paddle.square(self.weight), axis=0, keepdim=True))
weight = paddle.divide(self.weight, weight_norm)
cos = paddle.matmul(input, weight)
if not self.training or label is None:
return cos
cos_m = cos - self.margin
one_hot = paddle.nn.functional.one_hot(label, self.class_num)
one_hot = paddle.squeeze(one_hot, axis=[1])
output = paddle.multiply(one_hot, cos_m) + paddle.multiply(
(1.0 - one_hot), cos)
output = output * self.scale
return output