Skip to content

Latest commit

 

History

History
290 lines (211 loc) · 10.1 KB

0188.买卖股票的最佳时机IV.md

File metadata and controls

290 lines (211 loc) · 10.1 KB

欢迎大家参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!

188.买卖股票的最佳时机IV

题目链接:https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-iv/

给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1: 输入:k = 2, prices = [2,4,1] 输出:2 解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2。

示例 2: 输入:k = 2, prices = [3,2,6,5,0,3] 输出:7 解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4。随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。

提示:

  • 0 <= k <= 100
  • 0 <= prices.length <= 1000
  • 0 <= prices[i] <= 1000

思路

这道题目可以说是动态规划:123.买卖股票的最佳时机III的进阶版,这里要求至多有k次交易。

动规五部曲,分析如下:

  1. 确定dp数组以及下标的含义

动态规划:123.买卖股票的最佳时机III中,我是定义了一个二维dp数组,本题其实依然可以用一个二维dp数组。

使用二维数组 dp[i][j] :第i天的状态为j,所剩下的最大现金是dp[i][j]

j的状态表示为:

  • 0 表示不操作
  • 1 第一次买入
  • 2 第一次卖出
  • 3 第二次买入
  • 4 第二次卖出
  • .....

大家应该发现规律了吧 ,除了0以外,偶数就是卖出,奇数就是买入

题目要求是至多有K笔交易,那么j的范围就定义为 2 * k + 1 就可以了。

所以二维dp数组的C++定义为:

vector<vector<int>> dp(prices.size(), vector<int>(2 * k + 1, 0));
  1. 确定递推公式

还要强调一下:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区

达到dp[i][1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i][1] = dp[i - 1][0] - prices[i]
  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]

选最大的,所以 dp[i][1] = max(dp[i - 1][0] - prices[i], dp[i - 1][0]);

同理dp[i][2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]

所以dp[i][2] = max(dp[i - 1][i] + prices[i], dp[i][2])

同理可以类比剩下的状态,代码如下:

for (int j = 0; j < 2 * k - 1; j += 2) {
    dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
    dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
}

本题和动态规划:123.买卖股票的最佳时机III最大的区别就是这里要类比j为奇数是买,偶数是卖剩的状态

  1. dp数组如何初始化

第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;

第0天做第一次买入的操作,dp[0][1] = -prices[0];

第0天做第一次卖出的操作,这个初始值应该是多少呢?

首先卖出的操作一定是收获利润,整个股票买卖最差情况也就是没有盈利即全程无操作现金为0,

从递推公式中可以看出每次是取最大值,那么既然是收获利润如果比0还小了就没有必要收获这个利润了。

所以dp[0][2] = 0;

第0天第二次买入操作,初始值应该是多少呢?

不用管第几次,现在手头上没有现金,只要买入,现金就做相应的减少。

第二次买入操作,初始化为:dp[0][3] = -prices[0];

所以同理可以推出dp[0][j]当j为奇数的时候都初始化为 -prices[0]

代码如下:

for (int j = 1; j < 2 * k; j += 2) {
    dp[0][j] = -prices[0];
}

在初始化的地方同样要类比j为偶数是卖、奇数是买的状态

  1. 确定遍历顺序

从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

  1. 举例推导dp数组

以输入[1,2,3,4,5],k=2为例。

188.买卖股票的最佳时机IV

最后一次卖出,一定是利润最大的,dp[prices.size() - 1][2 * k]即红色部分就是最后求解。

以上分析完毕,C++代码如下:

class Solution {
public:
    int maxProfit(int k, vector<int>& prices) {

        if (prices.size() == 0) return 0;
        vector<vector<int>> dp(prices.size(), vector<int>(2 * k + 1, 0));
        for (int j = 1; j < 2 * k; j += 2) {
            dp[0][j] = -prices[0];
        }
        for (int i = 1;i < prices.size(); i++) {
            for (int j = 0; j < 2 * k - 1; j += 2) {
                dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
                dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
            }
        }
        return dp[prices.size() - 1][2 * k];
    }
};

当然有的解法是定义一个三维数组dp[i][j][k],第i天,第j次买卖,k表示买还是卖的状态,从定义上来讲是比较直观。

但感觉三维数组操作起来有些麻烦,我是直接用二维数组来模拟三位数组的情况,代码看起来也清爽一些。

其他语言版本

Java:

// 版本一: 三维 dp数组
class Solution {
    public int maxProfit(int k, int[] prices) {
        if (prices.length == 0) return 0;

        // [天数][交易次数][是否持有股票]
        int len = prices.length;
        int[][][] dp = new int[len][k + 1][2];
        
        // dp数组初始化
        // 初始化所有的交易次数是为确保 最后结果是最多 k 次买卖的最大利润
        for (int i = 0; i <= k; i++) {
            dp[0][i][1] = -prices[0];
        }

        for (int i = 1; i < len; i++) {
            for (int j = 1; j <= k; j++) {
                // dp方程, 0表示不持有/卖出, 1表示持有/买入
                dp[i][j][0] = Math.max(dp[i - 1][j][0], dp[i - 1][j][1] + prices[i]);
                dp[i][j][1] = Math.max(dp[i - 1][j][1], dp[i - 1][j - 1][0] - prices[i]);
            }
        }
        return dp[len - 1][k][0];
    }
}

// 版本二: 空间优化
class Solution {
    public int maxProfit(int k, int[] prices) {
        if (prices.length == 0) return 0;

        // [天数][股票状态]
        // 股票状态: 奇数表示第 k 次交易持有/买入, 偶数表示第 k 次交易不持有/卖出, 0 表示没有操作
        int len = prices.length;
        int[][] dp = new int[len][k*2 + 1];
        
        // dp数组的初始化, 与版本一同理
        for (int i = 1; i < k*2; i += 2) {
            dp[0][i] = -prices[0];
        }

        for (int i = 1; i < len; i++) {
            for (int j = 0; j < k*2 - 1; j += 2) {
                dp[i][j + 1] = Math.max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
                dp[i][j + 2] = Math.max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
            }
        }
        return dp[len - 1][k*2];
    }
}

Python: 版本一

class Solution:
    def maxProfit(self, k: int, prices: List[int]) -> int:
        if len(prices) == 0:
            return 0
        dp = [[0] * (2*k+1) for _ in range(len(prices))]
        for j in range(1, 2*k, 2):
            dp[0][j] = -prices[0]
        for i in range(1, len(prices)):
            for j in range(0, 2*k-1, 2):
                dp[i][j+1] = max(dp[i-1][j+1], dp[i-1][j] - prices[i])
                dp[i][j+2] = max(dp[i-1][j+2], dp[i-1][j+1] + prices[i])
        return dp[-1][2*k]

版本二

class Solution:
    def maxProfit(self, k: int, prices: List[int]) -> int:
        if len(prices) == 0: return 0
        dp = [0] * (2*k + 1)
        for i in range(1,2*k,2):
            dp[i] = -prices[0]
        for i in range(1,len(prices)):
            for j in range(1,2*k + 1):
                if j % 2:
                    dp[j] = max(dp[j],dp[j-1]-prices[i])
                else:
                    dp[j] = max(dp[j],dp[j-1]+prices[i])
        return dp[2*k]

Go:

Javascript:

const maxProfit = (k,prices) => {
    if (prices == null || prices.length < 2 || k == 0) {
        return 0;
    }
    
    let dp = Array.from(Array(prices.length), () => Array(2*k+1).fill(0));

    for (let j = 1; j < 2 * k; j += 2) {
        dp[0][j] = 0 - prices[0];
    }
    
    for(let i = 1; i < prices.length; i++) {
        for (let j = 0; j < 2 * k; j += 2) {
            dp[i][j+1] = Math.max(dp[i-1][j+1], dp[i-1][j] - prices[i]);
            dp[i][j+2] = Math.max(dp[i-1][j+2], dp[i-1][j+1] + prices[i]);
        }
    }

    return dp[prices.length - 1][2 * k];
};