-
Notifications
You must be signed in to change notification settings - Fork 149
/
gcmc_example.py
62 lines (56 loc) · 1.63 KB
/
gcmc_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Copyright 2018 The Cornac Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Example for Graph Convolutional Matrix Completion with MovieLens 100K dataset
"""
import cornac
from cornac.datasets import movielens
from cornac.eval_methods import RatioSplit
# Load user-item feedback
data_100k = movielens.load_feedback(variant="100K")
# Instantiate an evaluation method to split data into train and test sets.
ratio_split = RatioSplit(
data=data_100k,
test_size=0.1,
val_size=0.1,
exclude_unknowns=True,
verbose=True,
seed=123,
)
pmf = cornac.models.PMF(
k=10,
max_iter=100,
learning_rate=0.001,
lambda_reg=0.001
)
biased_mf = cornac.models.MF(
name="BiasMF",
k=10,
max_iter=25,
learning_rate=0.01,
lambda_reg=0.02,
use_bias=True,
seed=123
)
gcmc = cornac.models.GCMC(
seed=123,
)
# Put everything together into an experiment and run it
cornac.Experiment(
eval_method=ratio_split,
models=[pmf, biased_mf, gcmc],
metrics=[cornac.metrics.RMSE()],
user_based=False,
).run()