-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
214 lines (176 loc) · 7.12 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
from fastapi import FastAPI, HTTPException, UploadFile, File
from fastapi.responses import FileResponse
from pydantic import BaseModel
from typing import Optional
import azure.cognitiveservices.speech as speechsdk
from openai import OpenAI
import pyaudio
import wave
import tempfile
import os
from dotenv import load_dotenv
from functools import wraps
# Load environment variables
load_dotenv()
# Initialize FastAPI app
app = FastAPI(
title="Voice Assistant API",
description="A voice assistant that converts speech to text, processes it, and returns synthesized speech",
version="1.0.0"
)
# Initialize API clients
openai_client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))
azure_speech_key = os.getenv('AZURE_SPEECH_KEY')
azure_service_region = os.getenv('AZURE_SPEECH_REGION')
class VoiceAssistantError(Exception):
"""Custom exception for Voice Assistant errors"""
pass
def handle_errors(func):
"""Decorator for error handling"""
@wraps(func)
async def wrapper(*args, **kwargs):
try:
return await func(*args, **kwargs)
except VoiceAssistantError as e:
raise HTTPException(status_code=400, detail=str(e))
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
return wrapper
class VoiceAssistant:
def __init__(self):
self.conversation_history = []
self.temp_dir = tempfile.mkdtemp()
self.openai_client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))
self.speech_config = speechsdk.SpeechConfig(
subscription=azure_speech_key,
region=azure_service_region
)
# Audio recording config
self.CHUNK = 1024
self.FORMAT = pyaudio.paInt16
self.CHANNELS = 1
self.RATE = 16000
self.RECORD_SECONDS = 5
async def record_audio(self) -> bytes:
"""Record audio from microphone"""
p = pyaudio.PyAudio()
try:
stream = p.open(
format=self.FORMAT,
channels=self.CHANNELS,
rate=self.RATE,
input=True,
frames_per_buffer=self.CHUNK
)
frames = []
for _ in range(0, int(self.RATE / self.CHUNK * self.RECORD_SECONDS)):
data = stream.read(self.CHUNK)
frames.append(data)
temp_path = os.path.join(self.temp_dir, "temp_recording.wav")
wf = wave.open(temp_path, 'wb')
wf.setnchannels(self.CHANNELS)
wf.setsampwidth(p.get_sample_size(self.FORMAT))
wf.setframerate(self.RATE)
wf.writeframes(b''.join(frames))
wf.close()
with open(temp_path, 'rb') as audio_file:
audio_bytes = audio_file.read()
return audio_bytes
finally:
stream.stop_stream()
stream.close()
p.terminate()
async def transcribe_audio(self, audio_bytes: bytes) -> str:
"""Convert speech to text using OpenAI Whisper"""
try:
response = self.openai_client.audio.transcriptions.create(
model="whisper-1",
file=("audio.wav", audio_bytes),
)
return response.text
except Exception as e:
raise VoiceAssistantError(f"Transcription failed: {str(e)}")
async def get_chat_response(self, text: str) -> str:
"""Get response from ChatGPT"""
try:
self.conversation_history.append({"role": "user", "content": text})
response = self.openai_client.chat.completions.create(
model="gpt-4",
messages=self.conversation_history,
max_tokens=150
)
assistant_response = response.choices[0].message.content
self.conversation_history.append({"role": "assistant", "content": assistant_response})
return assistant_response
except Exception as e:
raise VoiceAssistantError(f"Chat processing failed: {str(e)}")
async def synthesize_speech(self, text: str) -> str:
"""Convert text to speech using Azure"""
try:
output_path = os.path.join(self.temp_dir, "response.wav")
audio_config = speechsdk.audio.AudioOutputConfig(filename=output_path)
synthesizer = speechsdk.SpeechSynthesizer(
speech_config=self.speech_config,
audio_config=audio_config
)
result = synthesizer.speak_text_async(text).get()
if result.reason == speechsdk.ResultReason.SynthesizingAudioCompleted:
return output_path
else:
raise VoiceAssistantError("Speech synthesis failed")
except Exception as e:
raise VoiceAssistantError(f"Speech synthesis failed: {str(e)}")
async def process_voice_input(self, audio_data: bytes = None) -> tuple[str, str]:
"""Process voice input and return response text and audio file path"""
try:
if audio_data is None:
audio_data = await self.record_audio()
transcript = await self.transcribe_audio(audio_data)
response_text = await self.get_chat_response(transcript)
audio_path = await self.synthesize_speech(response_text)
return response_text, audio_path
except Exception as e:
raise VoiceAssistantError(f"Voice processing failed: {str(e)}")
def cleanup(self):
"""Clean up temporary files"""
import shutil
try:
shutil.rmtree(self.temp_dir)
except Exception:
pass
class ChatResponse(BaseModel):
text: str
audio_path: str
@app.get("/")
async def root():
"""Health check endpoint"""
return {"status": "ok", "message": "Voice Assistant API is running"}
@app.post("/chat", response_model=ChatResponse)
@handle_errors
async def chat_endpoint(audio_file: UploadFile = File(None)):
"""Process voice input and return response"""
assistant = VoiceAssistant()
try:
audio_data = None
if audio_file:
audio_data = await audio_file.read()
response_text, audio_path = await assistant.process_voice_input(audio_data)
with open(audio_path, 'rb') as f:
audio_content = f.read()
assistant.cleanup()
temp_response_path = tempfile.mktemp(suffix='.wav')
with open(temp_response_path, 'wb') as f:
f.write(audio_content)
return FileResponse(
path=temp_response_path,
media_type="audio/wav",
headers={"text-response": response_text},
filename="response.wav"
)
except Exception as e:
if assistant:
assistant.cleanup()
raise VoiceAssistantError(f"Chat processing failed: {str(e)}")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)