Skip to content

Latest commit

 

History

History
7220 lines (6751 loc) · 147 KB

README.md

File metadata and controls

7220 lines (6751 loc) · 147 KB

The Python SomaData Package from Somalogic, Inc.

License: MIT PyPI Downloads


Overview

This document accompanies the Python package somadata, which loads the SomaLogic, Inc. structured text data file called an *.adat. The somadata.Adat object is an extension of the pandas.DataFrame class. The package provides auxiliary functions for extracting relevant information from the ADAT object once in the Python environment. Basic familiarity with the Python environment is assumed, as is the ability to install contributed packages from the Python Package Installer (pip)


Table of Contents:

  1. Installation
  2. Basic Use
  3. Reading ADAT text files
  4. Wrangling Data
  5. Adding Metadata
  6. Slicing Data
  7. SomaScan Version Lifting
  8. Writing an ADAT text file
  9. Example Data Analysis

Installation

The easiest way to install SomaData is to install directly from PyPI

PIP:

pip install SomaData

Alternatively one can install from the GitHub repository.

GitHub:

pip install git+https://github.com/SomaLogic/Canopy.git#egg=somadata

Alternatively, if you wish to develop or change the source code, you may clone the repository and install manually via:

git clone https://github.com/SomaLogic/Canopy.git
pip install -e ./somadata

Dependencies

Python >=3.8 is required to install somadata. The following package dependencies are installed on a pip install:

  • pandas >= 1.1.0
  • numpy >= 1.19.1

return to top

Basics

Upon installation, load somadata as normal:

return to top

import somadata

For a traversable index of the library:

help(somadata)
# help(somadata.adat) ... etc
Help on package somadata:

NAME
    somadata

PACKAGE CONTENTS
    adat
    annotations
    base (package)
    data (package)
    errors
    io (package)
    tools (package)

FILE
    /Users/tjohnson/code/repos/SomaData/somadata/__init__.py

Internal Objects

The somadata package comes with one internal object available to users to run canned examples (or analyses). It can be accessed by perform the import:

  • from somadata.data.example_data import example_data

Main Features (I/O)

  • Loading data (Import)
    • Import a text file in the *.adat format into a Python session as an adat object.
  • Wrangling data (Manipulation)
    • Subset, reorder, and list various fields of an adat object.
  • Exporting data (Output)
    • Write out an adat object as a *.adat text file.

Loading an ADAT

return to top

Loading the sample file from within the somadata library via its path

adat = somadata.read_adat('./somadata/data/example_data.adat')
type(adat)
somadata.adat.Adat
adat.shape
(192, 5284)
adat.columns
MultiIndex([( '10000-28', '3', 'SL019233', ...),
            (  '10001-7', '3', 'SL002564', ...),
            ( '10003-15', '3', 'SL019245', ...),
            ( '10006-25', '3', 'SL019228', ...),
            ( '10008-43', '3', 'SL019234', ...),
            ( '10011-65', '3', 'SL019246', ...),
            (  '10012-5', '3', 'SL014669', ...),
            ( '10013-34', '3', 'SL025418', ...),
            ( '10014-31', '3', 'SL007803', ...),
            ('10015-119', '3', 'SL014924', ...),
            ...
            (  '9981-18', '3', 'SL018293', ...),
            (  '9983-97', '3', 'SL019202', ...),
            (  '9984-12', '3', 'SL019205', ...),
            (  '9986-14', '3', 'SL005356', ...),
            (  '9989-12', '3', 'SL019194', ...),
            (  '9993-11', '3', 'SL019212', ...),
            ( '9994-217', '3', 'SL019217', ...),
            (   '9995-6', '3', 'SL013164', ...),
            (  '9997-12', '3', 'SL019215', ...),
            (   '9999-1', '3', 'SL019231', ...)],
           names=['SeqId', 'SeqIdVersion', 'SomaId', 'TargetFullName', 'Target', 'UniProt', 'EntrezGeneID', 'EntrezGeneSymbol', 'Organism', 'Units', 'Type', 'Dilution', 'PlateScale_Reference', 'CalReference', 'Cal_Example_Adat_Set001', 'ColCheck', 'CalQcRatio_Example_Adat_Set001_170255', 'QcReference_170255', 'Cal_Example_Adat_Set002', 'CalQcRatio_Example_Adat_Set002_170255'], length=5284)
from IPython.display import HTML
#Display the first five rows and columns of the adat
HTML(adat.iloc[:5,:5].to_html()) # Need to use HTML & to_html() here to display nicely for this README
# Output is left-right scrollable in both this readme and Jupyter notebooks
SeqId 10000-28 10001-7 10003-15 10006-25 10008-43
SeqIdVersion 3 3 3 3 3
SomaId SL019233 SL002564 SL019245 SL019228 SL019234
TargetFullName Beta-crystallin B2 RAF proto-oncogene serine/threonine-protein kinase Zinc finger protein 41 ETS domain-containing protein Elk-1 Guanylyl cyclase-activating protein 1
Target CRBB2 c-Raf ZNF41 ELK1 GUC1A
UniProt P43320 P04049 P51814 P19419 P43080
EntrezGeneID 1415 5894 7592 2002 2978
EntrezGeneSymbol CRYBB2 RAF1 ZNF41 ELK1 GUCA1A
Organism Human Human Human Human Human
Units RFU RFU RFU RFU RFU
Type Protein Protein Protein Protein Protein
Dilution 20 20 0.5 20 20
PlateScale_Reference 687.4 227.8 126.9 634.2 585.0
CalReference 687.4 227.8 126.9 634.2 585.0
Cal_Example_Adat_Set001 1.01252025 1.01605709 0.95056180 0.99607350 0.94051447
ColCheck PASS PASS PASS PASS PASS
CalQcRatio_Example_Adat_Set001_170255 1.008 0.970 1.046 1.042 1.036
QcReference_170255 505.4 223.9 119.6 667.2 587.5
Cal_Example_Adat_Set002 1.01476233 1.03686846 1.15258856 0.93581231 0.96201283
CalQcRatio_Example_Adat_Set002_170255 1.067 1.007 0.981 1.026 0.998
PlateId PlateRunDate ScannerID PlatePosition SlideId Subarray SampleId SampleType PercentDilution SampleMatrix Barcode Barcode2d SampleName SampleNotes AliquotingNotes SampleDescription AssayNotes TimePoint ExtIdentifier SsfExtId SampleGroup SiteId TubeUniqueID CLI HybControlNormScale RowCheck NormScale_20 NormScale_0_005 NormScale_0_5 ANMLFractionUsed_20 ANMLFractionUsed_0_005 ANMLFractionUsed_0_5 Age Sex
Example Adat Set001 2020-06-18 SG15214400 H9 258495800012 3 1 Sample 20 Plasma-PPT 0.98185998 PASS 1.03693580 0.85701624 0.77717491 0.914 0.869 0.903 76 F 476.5 310.1 100.3 602.8 561.8
H8 258495800004 7 2 Sample 20 Plasma-PPT 0.96671829 PASS 0.96022505 0.84858420 0.85201953 0.937 0.956 0.973 55 F 474.4 293.5 101.8 561.9 541.9
H7 258495800010 8 3 Sample 20 Plasma-PPT 1.00193072 PASS 0.98411617 1.03270156 0.91519153 0.907 0.919 0.915 47 M 415.6 299.6 3030.1 563.9 423.9
H6 258495800003 4 4 Sample 20 Plasma-PPT 0.94017961 PASS 1.07839878 0.94626841 0.91246731 0.934 0.919 0.912 37 M 442.6 247.9 112.9 563.7 469.8
H5 258495800009 4 5 Sample 20 Plasma-PPT 0.94621098 PASS 0.84679446 0.92904553 0.77413056 0.707 0.894 0.708 71 F 465.7 710.7 95.9 791.0 443.5

You may also access the dict header metadata via:

adat.header_metadata
{'!AdatId': 'GID-1234-56-789-abcdef',
 '!Version': '1.2',
 '!AssayType': 'PharmaServices',
 '!AssayVersion': 'V4',
 '!AssayRobot': 'Fluent 1 L-307',
 '!Legal': 'Experiment details and data have been processed to protect Personally Identifiable Information (PII) and comply with existing privacy laws.',
 '!CreatedBy': 'PharmaServices',
 '!CreatedDate': '2020-07-24',
 '!EnteredBy': 'Technician1',
 '!ExpDate': '2020-06-18, 2020-07-20',
 '!GeneratedBy': 'Px (Build:  : ), Canopy_0.1.1',
 '!RunNotes': "2 columns ('Age' and 'Sex') have been added to this ADAT. Age has been randomly increased or decreased by 1-2 years to protect patient information",
 '!ProcessSteps': 'Raw RFU, Hyb Normalization, medNormInt (SampleId), plateScale, Calibration, anmlQC, qcCheck, anmlSMP',
 '!ProteinEffectiveDate': '2019-08-06',
 '!StudyMatrix': 'EDTA Plasma',
 '!PlateType': '',
 '!LabLocation': 'SLUS',
 '!StudyOrganism': '',
 '!Title': 'Example Adat Set001, Example Adat Set002',
 '!AssaySite': 'SW',
 '!CalibratorId': '170261',
 '!ReportConfig': {'analysisSteps': [{'stepType': 'hybNorm',
    'referenceSource': 'intraplate',
    'includeSampleTypes': ['QC', 'Calibrator', 'Buffer']},
   {'stepName': 'medNormInt',
    'stepType': 'medNorm',
    'includeSampleTypes': ['Calibrator', 'Buffer'],
    'referenceSource': 'intraplate',
    'referenceFields': ['SampleId']},
   {'stepType': 'plateScale',
    'referenceSource': 'Reference_v4_Plasma_Calibrator_170261'},
   {'stepType': 'calibrate',
    'referenceSource': 'Reference_v4_Plasma_Calibrator_170261'},
   {'stepName': 'anmlQC',
    'stepType': 'ANML',
    'effectSizeCutoff': 2.0,
    'minFractionUsed': 0.3,
    'includeSampleTypes': ['QC'],
    'referenceSource': 'Reference_v4_Plasma_ANML'},
   {'stepType': 'qcCheck',
    'QCReferenceSource': 'Reference_v4_Plasma_QC_ANML_170255',
    'tailsCriteriaLower': 0.8,
    'tailsCriteriaUpper': 1.2,
    'tailThreshold': 15.0,
    'QCAdditionalReferenceSources': ['Reference_v4_Plasma_QC_ANML_170259',
     'Reference_v4_Plasma_QC_ANML_170260'],
    'prenormalized': True},
   {'stepName': 'anmlSMP',
    'stepType': 'ANML',
    'effectSizeCutoff': 2.0,
    'minFractionUsed': 0.3,
    'includeSampleTypes': ['Sample'],
    'referenceSource': 'Reference_v4_Plasma_ANML'}],
  'qualityReports': ['SQS Report'],
  'filter': {'proteinEffectiveDate': '2019-08-06'}},
 'HybNormReference': 'intraplate',
 'MedNormReference': 'intraplate',
 'NormalizationAlgorithm': 'ANML',
 'PlateScale_ReferenceSource': 'Reference_v4_Plasma_Calibrator_170261',
 'PlateScale_Scalar_Example_Adat_Set001': '1.08091554',
 'PlateScale_PassFlag_Example_Adat_Set001': 'PASS',
 'CalibrationReference': 'Reference_v4_Plasma_Calibrator_170261',
 'CalPlateTailPercent_Example_Adat_Set001': '0.1',
 'PlateTailPercent_Example_Adat_Set001': '1.2',
 'PlateTailTest_Example_Adat_Set001': 'PASS',
 'PlateScale_Scalar_Example_Adat_Set002': '1.09915270',
 'PlateScale_PassFlag_Example_Adat_Set002': 'PASS',
 'CalPlateTailPercent_Example_Adat_Set002': '2.6',
 'PlateTailPercent_Example_Adat_Set002': '4.2',
 'PlateTailTest_Example_Adat_Set002': 'PASS'}

SomaData's Adat object inherits the pandas printing methods which displays nicely in Jupyter Notebooks when using IPython.display.display().

Wrangling

Dataframe columns Contain Feature Information

return to top

# Using the `adat` loaded from above
aptamer_df = adat.columns.to_frame(index=False)
type(aptamer_df)
pandas.core.frame.DataFrame
HTML(aptamer_df.head(5).to_html())
SeqId SeqIdVersion SomaId TargetFullName Target UniProt EntrezGeneID EntrezGeneSymbol Organism Units Type Dilution PlateScale_Reference CalReference Cal_Example_Adat_Set001 ColCheck CalQcRatio_Example_Adat_Set001_170255 QcReference_170255 Cal_Example_Adat_Set002 CalQcRatio_Example_Adat_Set002_170255
0 10000-28 3 SL019233 Beta-crystallin B2 CRBB2 P43320 1415 CRYBB2 Human RFU Protein 20 687.4 687.4 1.01252025 PASS 1.008 505.4 1.01476233 1.067
1 10001-7 3 SL002564 RAF proto-oncogene serine/threonine-protein kinase c-Raf P04049 5894 RAF1 Human RFU Protein 20 227.8 227.8 1.01605709 PASS 0.970 223.9 1.03686846 1.007
2 10003-15 3 SL019245 Zinc finger protein 41 ZNF41 P51814 7592 ZNF41 Human RFU Protein 0.5 126.9 126.9 0.95056180 PASS 1.046 119.6 1.15258856 0.981
3 10006-25 3 SL019228 ETS domain-containing protein Elk-1 ELK1 P19419 2002 ELK1 Human RFU Protein 20 634.2 634.2 0.99607350 PASS 1.042 667.2 0.93581231 1.026
4 10008-43 3 SL019234 Guanylyl cyclase-activating protein 1 GUC1A P43080 2978 GUCA1A Human RFU Protein 20 585.0 585.0 0.94051447 PASS 1.036 587.5 0.96201283 0.998

Accessing feature data

The .to_frame() method creates a lookup table that links the feature names in the adat object to the annotation data in columns:

col_df = adat.columns.to_frame(index=False)
type(col_df)
pandas.core.frame.DataFrame
HTML(col_df.head(5).to_html())
SeqId SeqIdVersion SomaId TargetFullName Target UniProt EntrezGeneID EntrezGeneSymbol Organism Units Type Dilution PlateScale_Reference CalReference Cal_Example_Adat_Set001 ColCheck CalQcRatio_Example_Adat_Set001_170255 QcReference_170255 Cal_Example_Adat_Set002 CalQcRatio_Example_Adat_Set002_170255
0 10000-28 3 SL019233 Beta-crystallin B2 CRBB2 P43320 1415 CRYBB2 Human RFU Protein 20 687.4 687.4 1.01252025 PASS 1.008 505.4 1.01476233 1.067
1 10001-7 3 SL002564 RAF proto-oncogene serine/threonine-protein kinase c-Raf P04049 5894 RAF1 Human RFU Protein 20 227.8 227.8 1.01605709 PASS 0.970 223.9 1.03686846 1.007
2 10003-15 3 SL019245 Zinc finger protein 41 ZNF41 P51814 7592 ZNF41 Human RFU Protein 0.5 126.9 126.9 0.95056180 PASS 1.046 119.6 1.15258856 0.981
3 10006-25 3 SL019228 ETS domain-containing protein Elk-1 ELK1 P19419 2002 ELK1 Human RFU Protein 20 634.2 634.2 0.99607350 PASS 1.042 667.2 0.93581231 1.026
4 10008-43 3 SL019234 Guanylyl cyclase-activating protein 1 GUC1A P43080 2978 GUCA1A Human RFU Protein 20 585.0 585.0 0.94051447 PASS 1.036 587.5 0.96201283 0.998

Display features

adat.columns.get_level_values('SeqId')[:20] # first 20 features
Index(['10000-28', '10001-7', '10003-15', '10006-25', '10008-43', '10011-65',
       '10012-5', '10013-34', '10014-31', '10015-119', '10021-1', '10022-207',
       '10023-32', '10024-44', '10030-8', '10034-16', '10035-6', '10036-201',
       '10037-98', '10040-63'],
      dtype='object', name='SeqId')

Get # Features

adat.shape[1]
5284

Clinical Data

Dataframe index Contains Sample Information

# Using the `adat` loaded from above
sample_df = adat.index.to_frame(index=False)
type(sample_df)
pandas.core.frame.DataFrame
HTML(sample_df.head(5).to_html())
PlateId PlateRunDate ScannerID PlatePosition SlideId Subarray SampleId SampleType PercentDilution SampleMatrix Barcode Barcode2d SampleName SampleNotes AliquotingNotes SampleDescription AssayNotes TimePoint ExtIdentifier SsfExtId SampleGroup SiteId TubeUniqueID CLI HybControlNormScale RowCheck NormScale_20 NormScale_0_005 NormScale_0_5 ANMLFractionUsed_20 ANMLFractionUsed_0_005 ANMLFractionUsed_0_5 Age Sex
0 Example Adat Set001 2020-06-18 SG15214400 H9 258495800012 3 1 Sample 20 Plasma-PPT 0.98185998 PASS 1.03693580 0.85701624 0.77717491 0.914 0.869 0.903 76 F
1 Example Adat Set001 2020-06-18 SG15214400 H8 258495800004 7 2 Sample 20 Plasma-PPT 0.96671829 PASS 0.96022505 0.84858420 0.85201953 0.937 0.956 0.973 55 F
2 Example Adat Set001 2020-06-18 SG15214400 H7 258495800010 8 3 Sample 20 Plasma-PPT 1.00193072 PASS 0.98411617 1.03270156 0.91519153 0.907 0.919 0.915 47 M
3 Example Adat Set001 2020-06-18 SG15214400 H6 258495800003 4 4 Sample 20 Plasma-PPT 0.94017961 PASS 1.07839878 0.94626841 0.91246731 0.934 0.919 0.912 37 M
4 Example Adat Set001 2020-06-18 SG15214400 H5 258495800009 4 5 Sample 20 Plasma-PPT 0.94621098 PASS 0.84679446 0.92904553 0.77413056 0.707 0.894 0.708 71 F

Modifying Metadata

The Adat index and columns are pandas.MultiIndex objects. Several convenience functions exist to help you modify these objects. Typically, the row metadata (axis=0) represents data describing the sample or the individual from whom the sample was collected. The column metadata (axis=1) contains data regarding the SOMAmer reagent, the reagent's target and scalars applied to columns during normalization, these columns are not usually edited by the end user but can be using the same methods demonstrated on row metadata below.

return to top

Add Row Metadata

Row metadata is sample level information which could include added clinical data like age, sex or clinical measurements. The Adat class facilitates managing this data.

# using ittertools to simulate some metadata:
from itertools import cycle, islice
import pandas as pd

# for demonstration we will simulate two types of metadata.  Metadata stored in a list and metadata stored with key-value pairs.
metadata_list = list(islice(cycle(['A', 'B', 'X', 'Y']), adat.shape[0]))
metadata_dictionary = {k:v for k, v in zip(adat.index.get_level_values('SampleId').to_list(), metadata_list)}

Add unlabeled metadata

You might do this if you know your metadata and Adat are ordered the same way but you are not using a shared key.

return to top

new_meta_adat = adat.insert_meta(0,'GroupData', metadata_list)
# this will produce a new Adat file with group data in the right most column of the index
new_meta_adat.index.to_frame(index=False).loc[0:6, ['PlateId', 'SampleId', 'GroupData']]
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
PlateId SampleId GroupData
0 Example Adat Set001 1 A
1 Example Adat Set001 2 B
2 Example Adat Set001 3 X
3 Example Adat Set001 4 Y
4 Example Adat Set001 5 A
5 Example Adat Set001 6 B
6 Example Adat Set001 7 X

Add Keyed Metadata

You might have data coming in as key value pairs from another data source. In that case it is easier to insert metadata using those keys:

return to top

# The arguments are `axis` 0 for row metadata, 1 for column metadata, `name` the name of the new index,
#`key_meta_name` the nameo of the axis used to match the keys. `values_dict` the dictionary containing the new data
new_meta_adat = adat.insert_keyed_meta(0,'GroupData', 'SampleId', metadata_dictionary)
# this will produce a new Adat file with group data in the right most column of the index
new_meta_adat.index.to_frame(index=False).loc[0:6, ['PlateId', 'SampleId', 'GroupData']]
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
PlateId SampleId GroupData
0 Example Adat Set001 1 A
1 Example Adat Set001 2 B
2 Example Adat Set001 3 X
3 Example Adat Set001 4 Y
4 Example Adat Set001 5 A
5 Example Adat Set001 6 B
6 Example Adat Set001 7 X

Replace Metadata with Unlabeled Metadata

You might do this if you know your metadata and Adat are ordered the same way but you are not using a shared key.

return to top

new_meta_adat = adat.replace_meta(0,'SampleName', metadata_list)
# this will produce a new Adat file with group data in the right most column of the index
new_meta_adat.index.to_frame(index=False).loc[0:6, ['PlateId', 'SampleId', 'SampleName']]
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
PlateId SampleId SampleName
0 Example Adat Set001 1 A
1 Example Adat Set001 2 B
2 Example Adat Set001 3 X
3 Example Adat Set001 4 Y
4 Example Adat Set001 5 A
5 Example Adat Set001 6 B
6 Example Adat Set001 7 X

Replace Metadata with Keyed Metadata

You might need to replace metadata based on another document using key-value pairs.

return to top

#Here we replace the values in `SampleName` with the values from `metadata_dictionary`
new_meta_adat = adat.replace_keyed_meta(0,'SampleName', metadata_dictionary, 'SampleId')
# this will produce a new Adat file with group data in the right most column of the index
new_meta_adat.index.to_frame(index=False).loc[0:6, ['PlateId', 'SampleId', 'SampleName']]
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
PlateId SampleId SampleName
0 Example Adat Set001 1 A
1 Example Adat Set001 2 B
2 Example Adat Set001 3 X
3 Example Adat Set001 4 Y
4 Example Adat Set001 5 A
5 Example Adat Set001 6 B
6 Example Adat Set001 7 X

Math

You may perform mathematical transformations on the feature data via apply or calling those functions and passing the entire dataframe.

import numpy as np
# Using the `adat` loaded from above
log10_adat = adat.apply(np.log10)  # equivalent to `np.log10(adat)`
rounded_adat = adat.apply(round, args=[5,])  # equivalent to `round(adat, 5)`
sqrt_adat = adat.apply(np.sqrt)  # equivlane to `np.sqrt(adat)`

Subsetting/Slicing the Dataframe

You may extract certain subgroups of samples and/or features. SomaData augments the pandas dataframe with a number of helper functions to aid the user.

return to top

# Extract rows of only calibrator-type samples
calibrator_adat = adat.pick_on_meta(axis=0, name='SampleType', values=['Calibrator'])

# Exclude calibrator-type samples
non_calibrator_adat = adat.exclude_on_meta(axis=0, name='SampleType', values=['Calibrator'])

# Extract columns containing features that start with 'MMP'
target_names = adat.columns.get_level_values('Target')
mmp_names = [target for target in target_names if target.startswith('MMP')]
mmp_adat = adat.pick_on_meta(axis=1, name='Target', values=mmp_names)
mmp_adat
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead tr th {
    text-align: left;
}

.dataframe thead tr:last-of-type th {
    text-align: right;
}
</style>
SeqId 15419-15 2579-17 2788-55 2789-26 2838-53 4160-49 4496-60 4924-32 4925-54 5002-76 5268-49 6425-87 8479-4 9172-69 9719-145
SeqIdVersion 3 5 1 2 1 1 2 1 2 1 3 3 3 3 3
SomaId SL012374 SL000527 SL000524 SL000525 SL003332 SL000124 SL000522 SL000521 SL000523 SL002646 SL003331 SL007616 SL000645 SL000526 SL003331
TargetFullName Matrix metalloproteinase-20 Matrix metalloproteinase-9 Stromelysin-1 Matrilysin Matrix metalloproteinase-17 72 kDa type IV collagenase Macrophage metalloelastase Interstitial collagenase Collagenase 3 Matrix metalloproteinase-14 Matrix metalloproteinase-16 Matrix metalloproteinase-19 Stromelysin-2 Neutrophil collagenase Matrix metalloproteinase-16
Target MMP20 MMP-9 MMP-3 MMP-7 MMP-17 MMP-2 MMP-12 MMP-1 MMP-13 MMP-14 MMP-16 MMP19 MMP-10 MMP-8 MMP-16
UniProt O60882 P14780 P08254 P09237 Q9ULZ9 P08253 P39900 P03956 P45452 P50281 P51512 Q99542 P09238 P22894 P51512
EntrezGeneID 9313 4318 4314 4316 4326 4313 4321 4312 4322 4323 4325 4327 4319 4317 4325
EntrezGeneSymbol MMP20 MMP9 MMP3 MMP7 MMP17 MMP2 MMP12 MMP1 MMP13 MMP14 MMP16 MMP19 MMP10 MMP8 MMP16
Organism Human Human Human Human Human Human Human Human Human Human Human Human Human Human Human
Units RFU RFU RFU RFU RFU RFU RFU RFU RFU RFU RFU RFU RFU RFU RFU
Type Protein Protein Protein Protein Protein Protein Protein Protein Protein Protein Protein Protein Protein Protein Protein
Dilution 20 0.5 0.5 20 20 0.5 20 20 20 20 20 0.5 20 20 20
PlateScale_Reference 937.5 19472.3 117.2 2392.9 1520.6 14888.5 1014.9 7611.5 376.6 632.1 565.8 5063.4 1534.0 1088.5 1166.8
CalReference 937.5 19472.3 117.2 2392.9 1520.6 14888.5 1014.9 7611.5 376.6 632.1 565.8 5063.4 1534.0 1088.5 1166.8
Cal_Example_Adat_Set001 1.06947296 1.01957222 0.98404702 0.90131455 1.13783298 0.98961103 0.96180819 0.91162239 0.98689727 1.02497162 0.97906212 0.97843478 0.95061040 0.94709823 1.02243253
ColCheck PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS
CalQcRatio_Example_Adat_Set001_170255 1.132 1.002 0.893 1.130 0.955 0.987 1.014 1.054 1.023 0.987 1.024 1.005 1.023 1.029 1.003
QcReference_170255 793.4 10420.6 124.2 9482.5 1252.0 16044.7 1115.3 13192.8 394.4 492.1 559.2 6162.7 1946.6 845.5 1171.0
Cal_Example_Adat_Set002 1.02380692 1.00117741 1.31243001 0.67812509 1.09317038 0.98499534 0.95953484 0.95154455 0.90594178 1.08143713 0.98143972 0.98821187 0.92700024 1.03983569 1.02055454
CalQcRatio_Example_Adat_Set002_170255 1.192 1.009 0.821 1.123 1.083 1.028 1.006 1.025 0.991 0.949 1.002 0.990 1.010 1.039 0.951
PlateId PlateRunDate ScannerID PlatePosition SlideId Subarray SampleId SampleType PercentDilution SampleMatrix Barcode Barcode2d SampleName SampleNotes AliquotingNotes SampleDescription AssayNotes TimePoint ExtIdentifier SsfExtId SampleGroup SiteId TubeUniqueID CLI HybControlNormScale RowCheck NormScale_20 NormScale_0_005 NormScale_0_5 ANMLFractionUsed_20 ANMLFractionUsed_0_005 ANMLFractionUsed_0_5 Age Sex
Example Adat Set001 2020-06-18 SG15214400 H9 258495800012 3 1 Sample 20 Plasma-PPT 0.98185998 PASS 1.03693580 0.85701624 0.77717491 0.914 0.869 0.903 76 F 729.9 16230.2 177.9 11903.3 1378.1 11997.2 2455.9 20988.1 442.5 414.2 712.5 8965.5 2030.6 2181.5 1096.4
H8 258495800004 7 2 Sample 20 Plasma-PPT 0.96671829 PASS 0.96022505 0.84858420 0.85201953 0.937 0.956 0.973 55 F 873.3 17253.4 152.8 16508.8 1652.0 14574.6 1595.0 11498.5 501.1 505.9 629.9 8669.7 1301.6 1571.2 1149.0
H7 258495800010 8 3 Sample 20 Plasma-PPT 1.00193072 PASS 0.98411617 1.03270156 0.91519153 0.907 0.919 0.915 47 M 993.0 13094.1 127.5 7577.0 1711.7 14468.7 503.3 14697.7 2883.2 445.8 510.6 6728.9 1067.3 1528.9 1027.8
H6 258495800003 4 4 Sample 20 Plasma-PPT 0.94017961 PASS 1.07839878 0.94626841 0.91246731 0.934 0.919 0.912 37 M 906.5 20991.4 155.0 8673.7 1667.5 9913.1 438.4 20819.0 375.2 644.8 547.8 8629.0 1162.4 1173.7 1091.6
H5 258495800009 4 5 Sample 20 Plasma-PPT 0.94621098 PASS 0.84679446 0.92904553 0.77413056 0.707 0.894 0.708 71 F 747.0 8070.4 124.0 20423.7 1426.6 11345.0 1954.5 16168.9 356.9 446.4 541.7 8125.2 1667.0 1048.6 1132.6
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
Example Adat Set002 2020-07-20 SG15214400 A2 258495800108 3 188 Sample 20 Plasma-PPT 0.96699908 PASS 0.95993275 1.08910138 0.99491979 0.566 0.912 0.719 38 F 714.7 19877.3 114.5 15151.9 894.7 17266.2 682.8 27419.4 480.3 705.1 527.9 6638.2 3919.7 1787.5 1191.1
A12 258495800104 2 189 Sample 20 Plasma-PPT 0.91482584 PASS 1.21880129 1.01022697 0.99244374 0.918 0.919 0.926 40 F 865.8 25801.4 123.6 15711.6 1308.4 16598.3 1369.2 15153.5 474.2 655.0 592.2 8953.9 2494.9 2156.2 1391.5
A11 258495800108 5 190 Sample 20 Plasma-PPT 0.88282283 PASS 1.36699142 1.16271427 1.19673587 0.927 0.981 0.964 43 M 869.7 13728.5 140.9 11437.3 1353.5 17996.2 1344.2 10575.3 433.7 439.8 530.7 6193.9 2067.6 2466.6 1114.8
A10 258495800105 5 191 Sample 20 Plasma-PPT 0.95792282 PASS 1.30590374 0.98395166 0.97460119 0.835 0.963 0.944 55 M 529.2 13298.2 161.7 14210.8 1026.0 14549.0 1466.1 9683.8 291.6 435.8 676.1 9584.8 1799.5 1347.8 1194.2
A1 258495800110 5 192 Sample 20 Plasma-PPT 0.97384118 PASS 1.30710646 0.93230123 1.00804341 0.793 0.963 0.933 56 F 1934.4 7567.8 133.0 13614.3 1220.2 16223.8 1110.9 7737.4 364.2 3407.0 645.2 7867.1 1720.9 1888.2 1293.8

192 rows × 15 columns

Lifting ADAT data between assay versions.

Adat data can be lifted from one SomaScan Assay version's RFU space to another SomaScan Assay version's RFU space. This is achieved by scaling SOMAmer reagent measurement columns using scale factors available at menu.somalogic.com and built in to this tool in the Adat.lift() method.

The example Adat exists in SomaScan Version V4.0 assay space (also called 5K in some literature). In this example we will lift to SomaScan V5.0 (11K) assay space. It is important to know that only SOMAmer reagent measurements in both assay versions can be lifted. When lifting from a smaller to a larger plex (as demonstrated) the resulting Adat will remain in the smaller plex size. When lifting from a larger to smaller plex size reagents that don't exist in the small plex size will be scaled by 1.0. The end user might choose to redact the lifted Adat to the smaller plex to better merge data.

The tool will raise in error if the end user attempts to lift an Adat object to its current version or an unsupported assay version.

Assay version mapping:

SomaScan data can be referred to by the assay version i.e. 'V5.0' or by the plex size i.e. '11K'. The tool can use either 'V5.0' or '11K' interchangeably in it's input. The mapping between these terms is shown in the table below:

SomaScan Assay Version SomaScan Plex SomaScan Menu Size
V4 5K 5284
V4.1 7K 7596
V5.0 11K 11083

return to top

lifted_adat = adat.lift('V5.0')
lifted_adat
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead tr th {
    text-align: left;
}

.dataframe thead tr:last-of-type th {
    text-align: right;
}
</style>
SeqId 10000-28 10001-7 10003-15 10006-25 10008-43 10011-65 10012-5 10013-34 10014-31 10015-119 ... 9981-18 9983-97 9984-12 9986-14 9989-12 9993-11 9994-217 9995-6 9997-12 9999-1
SeqIdVersion 3 3 3 3 3 3 3 3 3 3 ... 3 3 3 3 3 3 3 3 3 3
SomaId SL019233 SL002564 SL019245 SL019228 SL019234 SL019246 SL014669 SL025418 SL007803 SL014924 ... SL018293 SL019202 SL019205 SL005356 SL019194 SL019212 SL019217 SL013164 SL019215 SL019231
TargetFullName Beta-crystallin B2 RAF proto-oncogene serine/threonine-protein kinase Zinc finger protein 41 ETS domain-containing protein Elk-1 Guanylyl cyclase-activating protein 1 Inositol polyphosphate 5-phosphatase OCRL-1 SAM pointed domain-containing Ets transcription factor Fc_MOUSE Zinc finger protein SNAI2 Voltage-gated potassium channel subunit beta-2 ... Protein FAM234B Inactive serine protease 35 Protein YIPF6 Neuropeptide W Leucine-rich repeat-containing protein 24 Zinc finger protein 264 Potassium-transporting ATPase subunit beta Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial UBX domain-containing protein 4 Interferon regulatory factor 6
Target CRBB2 c-Raf ZNF41 ELK1 GUC1A OCRL SPDEF Fc_MOUSE SLUG KCAB2 ... K1467 PRS35 YIPF6 Neuropeptide W LRC24 ZN264 ATP4B DUT UBXN4 IRF6
UniProt P43320 P04049 P51814 P19419 P43080 Q01968 O95238 Q99LC4 O43623 Q13303 ... A2RU67 Q8N3Z0 Q96EC8 Q8N729 Q50LG9 O43296 P51164 P33316 Q92575 O14896
EntrezGeneID 1415 5894 7592 2002 2978 4952 25803 6591 8514 ... 57613 167681 286451 283869 441381 9422 496 1854 23190 3664
EntrezGeneSymbol CRYBB2 RAF1 ZNF41 ELK1 GUCA1A OCRL SPDEF SNAI2 KCNAB2 ... KIAA1467 PRSS35 YIPF6 NPW LRRC24 ZNF264 ATP4B DUT UBXN4 IRF6
Organism Human Human Human Human Human Human Human Mouse Human Human ... Human Human Human Human Human Human Human Human Human Human
Units RFU RFU RFU RFU RFU RFU RFU RFU RFU RFU ... RFU RFU RFU RFU RFU RFU RFU RFU RFU RFU
Type Protein Protein Protein Protein Protein Protein Protein Protein Protein Protein ... Protein Protein Protein Protein Protein Protein Protein Protein Protein Protein
Dilution 20 20 0.5 20 20 20 20 20 20 20 ... 20 20 20 20 20 20 20 20 20 20
PlateScale_Reference 687.4 227.8 126.9 634.2 585.0 2807.1 1623.3 499.6 857.2 443.3 ... 643.9 430.0 627.5 3644.5 449.4 953.3 1971.1 1275.6 4426.9 851.9
CalReference 687.4 227.8 126.9 634.2 585.0 2807.1 1623.3 499.6 857.2 443.3 ... 643.9 430.0 627.5 3644.5 449.4 953.3 1971.1 1275.6 4426.9 851.9
Cal_Example_Adat_Set001 1.01252025 1.01605709 0.95056180 0.99607350 0.94051447 1.05383489 1.17290462 1.07095391 1.03464092 1.07466667 ... 0.98035932 1.04878049 1.03513692 0.96341431 1.01444695 1.04551437 0.98299422 0.97426106 0.96896272 0.96042841
ColCheck PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS ... PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS
CalQcRatio_Example_Adat_Set001_170255 1.008 0.970 1.046 1.042 1.036 0.975 1.010 0.953 0.978 0.975 ... 0.982 0.949 1.003 0.938 1.017 0.998 1.071 0.985 0.960 0.974
QcReference_170255 505.4 223.9 119.6 667.2 587.5 2617.6 1340.6 443.0 1289.4 441.5 ... 700.7 393.2 612.6 3089.2 455.1 885.6 1389.7 950.9 5560.7 1033.6
Cal_Example_Adat_Set002 1.01476233 1.03686846 1.15258856 0.93581231 0.96201283 1.03133955 1.21250373 1.18192572 0.98926717 1.13173347 ... 0.96075798 1.15250603 1.12013567 1.08296437 0.99314917 1.08268030 1.02784586 0.97351752 0.94828953 0.92900763
CalQcRatio_Example_Adat_Set002_170255 1.067 1.007 0.981 1.026 0.998 1.013 1.078 0.996 0.971 0.941 ... 0.982 0.993 0.990 0.929 0.978 0.961 1.022 0.970 1.027 0.997
PlateId PlateRunDate ScannerID PlatePosition SlideId Subarray SampleId SampleType PercentDilution SampleMatrix Barcode Barcode2d SampleName SampleNotes AliquotingNotes SampleDescription AssayNotes TimePoint ExtIdentifier SsfExtId SampleGroup SiteId TubeUniqueID CLI HybControlNormScale RowCheck NormScale_20 NormScale_0_005 NormScale_0_5 ANMLFractionUsed_20 ANMLFractionUsed_0_005 ANMLFractionUsed_0_5 Age Sex
Example Adat Set001 2020-06-18 SG15214400 H9 258495800012 3 1 Sample 20 Plasma-PPT 0.98185998 PASS 1.03693580 0.85701624 0.77717491 0.914 0.869 0.903 76 F 386.0 309.5 97.6 449.1 396.6 4965.9 1106.7 274.9 786.3 567.2 ... 551.9 352.5 408.4 3027.5 538.8 686.3 5202.4 2188.4 12697.7 966.5
H8 258495800004 7 2 Sample 20 Plasma-PPT 0.96671829 PASS 0.96022505 0.84858420 0.85201953 0.937 0.956 0.973 55 F 384.3 292.9 99.1 418.6 382.6 2149.6 1307.8 324.1 779.4 371.8 ... 689.3 358.2 456.0 5724.5 470.3 663.0 1195.9 2302.7 13247.8 824.2
H7 258495800010 8 3 Sample 20 Plasma-PPT 1.00193072 PASS 0.98411617 1.03270156 0.91519153 0.907 0.919 0.915 47 M 336.6 299.0 2948.3 420.1 299.3 2306.6 1290.9 348.6 845.0 416.8 ... 547.0 382.0 503.9 3380.7 405.3 647.6 1552.4 1183.2 11072.1 1145.8
H6 258495800003 4 4 Sample 20 Plasma-PPT 0.94017961 PASS 1.07839878 0.94626841 0.91246731 0.934 0.919 0.912 37 M 358.5 247.4 109.9 420.0 331.7 2261.4 1184.1 362.0 4348.0 374.6 ... 561.9 384.4 477.7 1361.8 493.0 643.5 1005.3 1399.4 9082.4 804.6
H5 258495800009 4 5 Sample 20 Plasma-PPT 0.94621098 PASS 0.84679446 0.92904553 0.77413056 0.707 0.894 0.708 71 F 377.2 709.3 93.3 589.3 313.1 1949.4 990.0 272.8 787.7 723.8 ... 480.0 343.0 742.3 4846.0 487.7 701.4 1132.4 9852.9 38461.1 2865.9
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
Example Adat Set002 2020-07-20 SG15214400 A2 258495800108 3 188 Sample 20 Plasma-PPT 0.96699908 PASS 0.95993275 1.08910138 0.99491979 0.566 0.912 0.719 38 F 393.3 954.0 124.2 719.8 1284.4 1312.0 750.7 312.1 727.7 829.2 ... 454.3 301.8 531.0 1658.5 541.8 861.5 1352.3 11604.6 45580.6 3687.1
A12 258495800104 2 189 Sample 20 Plasma-PPT 0.91482584 PASS 1.21880129 1.01022697 0.99244374 0.918 0.919 0.926 40 F 337.4 281.6 82.5 625.5 26153.5 1856.4 1004.8 297.4 734.0 388.3 ... 636.7 292.7 410.7 9236.8 487.6 629.3 1910.9 1855.0 9778.6 1004.4
A11 258495800108 5 190 Sample 20 Plasma-PPT 0.88282283 PASS 1.36699142 1.16271427 1.19673587 0.927 0.981 0.964 43 M 372.9 270.8 204.2 472.6 446.1 1733.8 1067.7 354.3 745.7 410.7 ... 566.0 364.5 448.2 2597.7 515.6 621.4 1113.3 1302.7 8766.2 770.8
A10 258495800105 5 191 Sample 20 Plasma-PPT 0.95792282 PASS 1.30590374 0.98395166 0.97460119 0.835 0.963 0.944 55 M 320.4 319.1 105.9 527.1 370.8 1701.9 756.9 266.4 618.4 453.9 ... 536.3 309.1 434.0 5167.2 522.8 588.2 891.1 2466.6 15455.9 1190.4
A1 258495800110 5 192 Sample 20 Plasma-PPT 0.97384118 PASS 1.30710646 0.93230123 1.00804341 0.793 0.963 0.933 56 F 370.3 288.1 187.2 469.9 438.5 1777.9 787.3 249.4 930.8 423.7 ... 601.9 285.9 467.0 2564.2 590.0 673.2 1036.7 2142.1 7950.7 722.8

192 rows × 5284 columns

# because some common documentation refers to plex size instead of assay version the tool also supports lifing by naming plex size.
lifted_adat = adat.lift('11K')
# Observing the Lin's CCC of the lifting scale factors.
from somadata.data import getSomaScanLiftCCC

# the method returns a pandas dataframe containing the available lift Lins's CCC values:
ccc = getSomaScanLiftCCC()

ccc
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
Serum Lin's CCC v5.0 11K to v4.1 7K Plasma Lin's CCC v5.0 11K to v4.1 7K Serum Lin's CCC v5.0 11K to v4.0 5K Plasma Lin's CCC v5.0 11K to v4.0 5K Serum Lin's CCC v4.1 7K to v4.0 5K Plasma Lin's CCC v4.1 7K to v4.0 5K
10000-28 0.977 0.982 0.970 0.966 0.967 0.963
10001-7 0.857 0.961 0.819 0.860 0.875 0.875
10003-15 0.759 0.787 0.761 0.674 0.774 0.668
10006-25 0.937 0.927 0.903 0.864 0.937 0.877
10008-43 0.951 0.939 0.915 0.879 0.925 0.908
... ... ... ... ... ... ...
9993-11 0.823 0.855 0.704 0.753 0.714 0.711
9994-217 0.492 0.964 0.502 0.767 0.809 0.778
9995-6 0.975 0.976 0.965 0.916 0.983 0.922
9997-12 0.877 0.955 0.857 0.892 0.926 0.885
9999-1 0.909 0.962 0.870 0.883 0.944 0.898

11083 rows × 6 columns

Lin's CCC Between Lifted and Assay Space Native Data

The tool allows you to display Lin's concordance correlation coefficient (Lin 1989) derived during the calculation of the lifting scale factors. This metric allows you to see how well lifted data is expected to correlate with date collected originally in the target assay data signal space. A Lin's CCC close to 1.0 indicates strong correlation indicating the signal would be highly concordant with the lifted value if the sample data were collected in the target assay version space.

# your exact transformation's Lin's CCC can be selected by filtering the column that contains your matrix and versions
# Lin's CCC are symmetrical v5.0 -> v4.0 == v4.0 -> v5.0.
ccc["Plasma Lin's CCC v5.0 11K to v4.0 5K"]
10000-28    0.966
10001-7     0.860
10003-15    0.674
10006-25    0.864
10008-43    0.879
            ...
9993-11     0.753
9994-217    0.767
9995-6      0.916
9997-12     0.892
9999-1      0.883
Name: Plasma Lin's CCC v5.0 11K to v4.0 5K, Length: 11083, dtype: float64

Writing an ADAT file

In order to store or share analysis the user may need to write out an ADAT file. This utility supports writing to the file system.

return to top

adat.to_adat('/tmp/out_file.adat')

Typical Analyses

Although it is beyond the scope of the SomaData package, below are 3 sample analyses that typical users/clients would perform on SomaLogic data. They are not intended to be a definitive guide in statistical analysis and existing packages do exist in the Python universe that perform parts or extensions of these techniques. Many variations of the workflows below exist, however the framework highlights how one could perform standard preliminary analyses on SomaLogic data for:

  • Two-group differential expression (t-test)
  • Binary classification (logistic regression)
  • Linear regression

return to top

Compare Groups (M/F) via t-test

from somadata.data.example_data import example_data # Example ADAT included with SomaData
from scipy.stats import ttest_ind
from collections import Counter
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
from io import StringIO

Display the shape of the adat (rows, columns)

example_data.shape
(192, 5284)

Describe the sample types within the adat and display their counts

Counter(example_data.index.get_level_values('SampleType'))
Counter({'Sample': 170, 'Calibrator': 10, 'Buffer': 6, 'QC': 6})

Prepare the adat for analysis

filtered_transformed_data = (
    example_data
        .exclude_on_meta(axis=0, name='Sex', values=[''])            # rm NAs if present
        .pick_on_meta(axis=0, name='SampleType', values=['Sample'])  # rm control samples
        .apply(np.log10)                                             # log10-transform
)

clean_data = (
    filtered_transformed_data
        .insert_keyed_meta(                                          # map Sex -> 0/1
            axis=0,
            key_meta_name='Sex',
            inserted_meta_name='Group',
            values_dict={'M': 1, 'F': 0}
        )
        .apply(lambda x: x - x.mean(), axis=0)                       # center features
        .apply(lambda x: x / x.std(), axis=0)                        # scale features
)

Display the grouping counts

print(clean_data.index.to_frame()['Sex'].value_counts())
print(clean_data.index.to_frame()['Group'].value_counts())
Sex
F    85
M    85
Name: count, dtype: int64
Group
0    85
1    85
Name: count, dtype: int64

Split the adat based on Group and perform t-test across all aptamers

tt_g0 = clean_data.pick_on_meta(axis=0, name='Group', values=[0])
tt_g1 = clean_data.pick_on_meta(axis=0, name='Group', values=[1])

tt_res = ttest_ind(tt_g0, tt_g1)
t_tests = list(zip(clean_data.columns.get_level_values('TargetFullName'), tt_res.pvalue))

Sort the results and display the 12 aptamers with the most significant p-values

t_tests_sorted = sorted(t_tests, key=lambda x: x[1])
tt_top_12_analytes = [name for name, p_value in t_tests_sorted[:12]]
tt_top_12_analytes
['Prostate-specific antigen',
 'Pregnancy zone protein',
 'Kunitz-type protease inhibitor 3',
 'Follicle stimulating hormone',
 'Ectonucleotide pyrophosphatase/phosphodiesterase family member 2',
 'Beta-defensin 104',
 'Luteinizing hormone',
 'Cysteine-rich secretory protein 2',
 'Human Chorionic Gonadotropin',
 'Serum amyloid P-component',
 'SLIT and NTRK-like protein 4',
 'Neurotrimin']

Plot the Group log(RFU) for each aptamer

tt_df= (
    filtered_transformed_data
        .pick_meta(axis=1, names=['TargetFullName'])
        .pick_on_meta(axis=1, name='TargetFullName', values=tt_top_12_analytes)[tt_top_12_analytes]
        .reset_index()
)

tt_melted_df = pd.melt(tt_df, value_vars=tt_top_12_analytes, id_vars='Sex', value_name='log10(RFU)')

tt_p = sns.catplot(
    x='Sex',
    y='log10(RFU)',
    col='TargetFullName',
    data=tt_melted_df,
    kind='box',
    col_wrap=3,
    sharey=False
)
tt_p.set_titles(row_template='{row_name}', col_template='{col_name}')
plt.show()

png

Logistic Regression (Predict Sex)

# Import the libraries that we need for this analysis
from sklearn.model_selection import train_test_split
from sklearn import metrics
from scipy.stats import pearsonr
import statsmodels.api as sm
from IPython.display import HTML

Prepare the data for LogisticRegression

# Wrangle `clean_data` into a simpler form
logr_x_df = (
    clean_data
        .pick_meta(axis=1, names=['SeqId', 'TargetFullName'])
        .reset_index(drop=True)
)
logr_y_df = (
    clean_data.index.get_level_values('Group')
)

# Split the dataset into train and test, holding back 25 samples for testing
logr_x_train, logr_x_test, logr_y_train, logr_y_test = train_test_split(logr_x_df, logr_y_df, test_size=25, random_state=0)

Perform univariate logistic regression for each aptamer

logr_apt_perf = []
for seq_info in logr_x_train:
    x = sm.add_constant(logr_x_train[seq_info]) # Need to add the intercept term since sm.GLM does not automatically do it
    mod = sm.GLM(logr_y_train, x, family=sm.families.Binomial())
    res = mod.fit()
    logr_apt_perf.append(res.summary2().tables[1].loc[[seq_info]])

Wrangle the GLM results of each aptamer into a dataframe and sort them by p-value

logr_df = pd.concat(logr_apt_perf).reset_index()
logr_df['SeqId'] = [x[0] for x in logr_df['index']]
logr_df['TargetFullName'] = [x[1] for x in logr_df['index']]
logr_df = logr_df.drop('index', axis=1)
logr_df = logr_df[['SeqId', 'TargetFullName', 'Coef.', 'Std.Err.', 'z', 'P>|z|', '[0.025', '0.975]']].set_index('SeqId')
logr_df_sorted = logr_df.sort_values('P>|z|')
HTML(logr_df_sorted.head(20).to_html()) # Need to use HTML here to display nicely for this README
TargetFullName Coef. Std.Err. z P>|z| [0.025 0.975]
SeqId
6580-29 Pregnancy zone protein -3.079818 0.489558 -6.291020 3.153866e-10 -4.039334 -2.120302
5763-67 Beta-defensin 104 2.974778 0.478400 6.218181 5.029509e-10 2.037131 3.912425
3032-11 Follicle stimulating hormone -1.505718 0.250398 -6.013292 1.817935e-09 -1.996490 -1.014946
7926-13 Kunitz-type protease inhibitor 3 2.887475 0.482526 5.984087 2.176067e-09 1.941742 3.833208
16892-23 Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 -2.335113 0.396641 -5.887216 3.927542e-09 -3.112516 -1.557710
9282-12 Cysteine-rich secretory protein 2 1.768026 0.309050 5.720837 1.060006e-08 1.162299 2.373754
2953-31 Luteinizing hormone -1.319728 0.240323 -5.491466 3.986115e-08 -1.790753 -0.848702
4914-10 Human Chorionic Gonadotropin -1.244551 0.229781 -5.416240 6.086534e-08 -1.694914 -0.794188
8468-19 Prostate-specific antigen 5.841131 1.113030 5.247953 1.537986e-07 3.659632 8.022630
2474-54 Serum amyloid P-component 1.434929 0.279218 5.139108 2.760458e-07 0.887673 1.982185
8428-102 Neurotrimin -1.264317 0.246142 -5.136543 2.798380e-07 -1.746745 -0.781888
9002-36 Serpin A11 -1.087385 0.219035 -4.964434 6.890169e-07 -1.516685 -0.658084
3066-12 Galectin-3 -1.005615 0.206735 -4.864276 1.148764e-06 -1.410808 -0.600423
5116-62 Roundabout homolog 2 -1.291594 0.270447 -4.775767 1.790237e-06 -1.821661 -0.761527
7139-14 SLIT and NTRK-like protein 4 1.018520 0.218625 4.658761 3.181183e-06 0.590023 1.447016
8484-24 Leptin -0.991585 0.219260 -4.522415 6.113800e-06 -1.421326 -0.561843
5934-1 Ferritin 1.012300 0.227525 4.449188 8.619536e-06 0.566360 1.458240
15324-58 Ferritin light chain 1.002813 0.226429 4.428822 9.474919e-06 0.559021 1.446606
4234-8 Interleukin-1 receptor-like 1 1.134058 0.258632 4.384831 1.160761e-05 0.627149 1.640968
2696-87 Persephin 1.412833 0.323348 4.369389 1.245947e-05 0.779083 2.046584

Fit model

logr_top_analytes = [(index, row['TargetFullName']) for index, row in logr_df_sorted.head(5).iterrows()] # Select the top 5 aptamers based on p-value
x = sm.add_constant(logr_x_train[logr_top_analytes])
logr_mod = sm.GLM(logr_y_train, x, family=sm.families.Binomial())
logr_res = logr_mod.fit()
logr_res.summary()
Generalized Linear Model Regression Results
Dep. Variable: y No. Observations: 145
Model: GLM Df Residuals: 139
Model Family: Binomial Df Model: 5
Link Function: Logit Scale: 1.0000
Method: IRLS Log-Likelihood: -8.4167
Date: Fri, 01 Mar 2024 Deviance: 16.833
Time: 13:19:34 Pearson chi2: 17.8
No. Iterations: 10 Pseudo R-squ. (CS): 0.7186
Covariance Type: nonrobust
coef std err z P>|z| [0.025 0.975]
const 1.6106 1.178 1.367 0.172 -0.699 3.920
('6580-29', 'Pregnancy zone protein') -7.0008 3.112 -2.250 0.024 -13.099 -0.902
('5763-67', 'Beta-defensin 104') 2.7821 1.255 2.217 0.027 0.322 5.242
('3032-11', 'Follicle stimulating hormone') -1.1722 0.818 -1.432 0.152 -2.776 0.432
('7926-13', 'Kunitz-type protease inhibitor 3') 2.2901 1.053 2.174 0.030 0.226 4.354
('16892-23', 'Ectonucleotide pyrophosphatase/phosphodiesterase family member 2') -3.6045 1.498 -2.407 0.016 -6.540 -0.669
# Create confusion matrix
x = sm.add_constant(logr_x_test[logr_top_analytes])
logr_predictions = [1 if val > 0.5 else 0 for val in logr_res.predict(x)]
cm = metrics.confusion_matrix(logr_y_test.values, logr_predictions)
# Print out performance metrics via Pandas
tp = cm[1, 1]
tn = cm[0, 0]
fp = cm[0, 1]
fn = cm[1, 0]
logr_perf_df = pd.DataFrame.from_records({
    'Sensitivity': tp / (tp + fn),
    'Specificity': tn / (tn + fp),
    'Accuracy': (tp + tn) / sum(sum(cm)),
    'PPV': tp / (tp + fp),
    'NPV': tn / (tn + fn)
}, index=['Value'])
HTML(logr_perf_df.to_html())
Accuracy NPV PPV Sensitivity Specificity
Value 1.0 1.0 1.0 1.0 1.0
# Display the confusion matrix
plt.figure(figsize=(3,3))
sns.heatmap(cm, annot=True, fmt=".3f", linewidths=.5, square=True, cmap='Blues')
plt.ylabel('Actual label')
plt.xlabel('Predicted label')
all_sample_title = 'Accuracy Score: {0}'.format(100 * logr_perf_df['Accuracy'].values[0])
plt.title(all_sample_title)
plt.show()

png

Linear Regression (Predict Age)

We use the same clean_data as the logistic regression analysis above.

Wrangle data

# Wrangle `clean_data` into a simpler form
linr_x_df = (
    clean_data
        .pick_meta(axis=1, names=['SeqId', 'TargetFullName'])
        .reset_index(drop=True)
)
linr_y = (
    [float(age) for age in clean_data.index.get_level_values('Age')]
)

# Split the dataset into train and test, holding back 25 samples for testing
linr_x_train, linr_x_test, linr_y_train, linr_y_test = train_test_split(linr_x_df, linr_y, test_size=25, random_state=5)

Perform univariate linear regression for each aptamer

linr_apt_perf = []
for seq_info in linr_x_df:
    x = sm.add_constant(linr_x_train[seq_info])
    mod = sm.OLS(linr_y_train, x)
    res = mod.fit()
    linr_apt_perf.append(res.summary2().tables[1].loc[[seq_info]])

Wrangle the GLM results of each aptamer into a dataframe and sort them by p-value

linr_res_df = pd.concat(linr_apt_perf).reset_index()
linr_res_df['SeqId'] = [x[0] for x in linr_res_df['index']]
linr_res_df['TargetFullName'] = [x[1] for x in linr_res_df['index']]
linr_res_df = linr_res_df.drop('index', axis=1)
linr_res_df = linr_res_df[['SeqId', 'TargetFullName', 'Coef.', 'Std.Err.', 't', 'P>|t|', '[0.025', '0.975]']].set_index('SeqId')
linr_sorted_res_df = linr_res_df.sort_values('P>|t|')
HTML(linr_sorted_res_df.head(20).to_html())
TargetFullName Coef. Std.Err. t P>|t| [0.025 0.975]
SeqId
3045-72 Pleiotrophin 6.713339 0.865578 7.755906 1.506400e-12 5.002359 8.424320
4374-45 Growth/differentiation factor 15 6.766537 0.902926 7.494011 6.377086e-12 4.981730 8.551343
3024-18 Alpha-2-antiplasmin -6.258739 0.895850 -6.986373 9.854830e-11 -8.029558 -4.487920
6392-7 WNT1-inducible-signaling pathway protein 2 6.206203 0.895426 6.931007 1.321588e-10 4.436222 7.976185
8480-29 EGF-containing fibulin-like extracellular matrix protein 1 6.179473 0.900370 6.863260 1.889770e-10 4.399719 7.959227
15640-54 Transgelin 6.159769 0.905043 6.806048 2.552783e-10 4.370777 7.948761
15533-97 Macrophage scavenger receptor types I and II 5.986741 0.907615 6.596127 7.616175e-10 4.192666 7.780815
15386-7 Fatty acid-binding protein, adipocyte 6.130562 0.931954 6.578182 8.355679e-10 4.288376 7.972748
16818-200 CUB domain-containing protein 1 5.919909 0.902842 6.556970 9.321408e-10 4.135268 7.704550
4496-60 Macrophage metalloelastase 6.149946 0.940133 6.541570 1.009072e-09 4.291592 8.008299
3362-61 Chordin-like protein 1 5.765444 0.913703 6.309975 3.287540e-09 3.959334 7.571554
4541-49 Cell adhesion molecule-related/down-regulated by oncogenes -5.703166 0.906248 -6.293164 3.578780e-09 -7.494540 -3.911793
3600-2 Chitotriosidase-1 5.831590 0.951184 6.130871 8.071212e-09 3.951391 7.711789
2609-59 Cystatin-C 5.577894 0.934072 5.971588 1.773159e-08 3.731521 7.424267
3234-23 Coiled-coil domain-containing protein 80 5.647487 0.948795 5.952270 1.949244e-08 3.772010 7.522963
14133-93 Interleukin-1 receptor type 2 -5.489368 0.926319 -5.926004 2.216438e-08 -7.320415 -3.658321
19601-15 Ankyrin repeat and SOCS box protein 9 5.412074 0.930313 5.817474 3.755863e-08 3.573131 7.251018
9793-145 Immunoglobulin superfamily DCC subclass member 4 -5.292703 0.911239 -5.808247 3.927116e-08 -7.093942 -3.491463
2677-1 Epidermal growth factor receptor -5.341396 0.919656 -5.808039 3.931061e-08 -7.159272 -3.523520
4968-50 Macrophage-capping protein 5.345710 0.926458 5.770050 4.721157e-08 3.514387 7.177033

Feed top 8 SOMAmers into statsmodels OLS regression

linr_top_analytes = [(index, row['TargetFullName']) for index, row in linr_sorted_res_df.head(8).iterrows()]
x = sm.add_constant(linr_x_train[linr_top_analytes])
mod = sm.OLS(linr_y_train, x).fit()
mod.summary()
OLS Regression Results
Dep. Variable: y R-squared: 0.501
Model: OLS Adj. R-squared: 0.471
Method: Least Squares F-statistic: 17.05
Date: Fri, 01 Mar 2024 Prob (F-statistic): 2.29e-17
Time: 13:20:02 Log-Likelihood: -522.29
No. Observations: 145 AIC: 1063.
Df Residuals: 136 BIC: 1089.
Df Model: 8
Covariance Type: nonrobust
coef std err t P>|t| [0.025 0.975]
const 55.5436 0.765 72.602 0.000 54.031 57.057
('3045-72', 'Pleiotrophin') 1.6913 1.197 1.413 0.160 -0.676 4.059
('4374-45', 'Growth/differentiation factor 15') 1.2404 1.258 0.986 0.326 -1.247 3.728
('3024-18', 'Alpha-2-antiplasmin') -2.5113 0.910 -2.758 0.007 -4.312 -0.711
('6392-7', 'WNT1-inducible-signaling pathway protein 2') 1.5143 0.997 1.519 0.131 -0.457 3.486
('8480-29', 'EGF-containing fibulin-like extracellular matrix protein 1') 2.1363 0.972 2.197 0.030 0.214 4.059
('15640-54', 'Transgelin') 1.2006 1.010 1.189 0.237 -0.796 3.198
('15533-97', 'Macrophage scavenger receptor types I and II') 0.8792 1.223 0.719 0.474 -1.540 3.298
('15386-7', 'Fatty acid-binding protein, adipocyte') 1.1453 1.180 0.971 0.333 -1.188 3.479
Omnibus: 2.712 Durbin-Watson: 2.042
Prob(Omnibus): 0.258 Jarque-Bera (JB): 2.501
Skew: -0.322 Prob(JB): 0.286
Kurtosis: 3.008 Cond. No. 4.53


Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Compute predictions on test set

x = sm.add_constant(linr_x_test[linr_top_analytes])
linr_predictions = mod.predict(x)
linr_pred_df = pd.DataFrame({
    'Actual Age': linr_y_test,
    'Predicted Age': linr_predictions
})

linr_pred_df['Pred Error'] = linr_pred_df['Predicted Age'] - linr_pred_df['Actual Age']

Compute model performance

# Lin's Concordance Correl. Coef.
# Accounts for location + scale shifts
def linCCC(x, y):
    if len(x) != len(y):
        raise Exception('Arrays are not the same length!')
    a = 2 * pearsonr(x, y)[0] * np.std(x, ddof=1) * np.std(y, ddof=1)
    b = np.var(x, ddof=1) + np.var(y, ddof=1) + (np.mean(x) - np.mean(y))**2
    return a / b

n = linr_x_test.shape[0]
p = len(linr_top_analytes)

# Regression metrics
linr_metrics_df = pd.DataFrame({
    'rss': linr_pred_df['Pred Error'].apply(lambda x: x**2).sum(), # residual sum of squares
    'tss': sum((linr_pred_df['Actual Age'] - linr_pred_df['Actual Age'].mean()) ** 2), # total sum of squares
    'R2': pearsonr(linr_pred_df['Actual Age'], linr_pred_df['Predicted Age'])[0] ** 2, # R-squared Pearson approx.
    'MAE': np.mean(np.abs(linr_pred_df['Pred Error'])), # Mean absolute error
    'RMSE': np.sqrt(np.mean(linr_pred_df['Pred Error'] ** 2)), # Root mean squared error
    'CCC': linCCC(linr_predictions, linr_y_test) # Lins concordance correlation coefficient
}, index=['Value'])

linr_metrics_df['rsq'] = 1 - (linr_metrics_df['rss'] / linr_metrics_df['tss']) # R-squared
linr_metrics_df['rsqadj'] = max(0, 1 - (1 - linr_metrics_df['rsq'][0]) * (n - 1) / (n - p - 1)), # Adjusted R-squared

HTML(linr_metrics_df.to_html())
rss tss R2 MAE RMSE CCC rsq rsqadj
Value 989.768231 2771.84 0.674484 5.214434 6.292116 0.752326 0.64292 0.46438

Visualize performance via concordance plot of predicted and actual values

f, ax = plt.subplots(1, figsize=(5, 5), dpi=150)
plot_range = [linr_pred_df[['Actual Age', 'Predicted Age']].min().min() * 0.95, linr_pred_df[['Actual Age', 'Predicted Age']].max().max() * 1.05]
ax.plot(plot_range, plot_range, c='g')
ax.scatter(linr_pred_df['Actual Age'], linr_pred_df['Predicted Age'], alpha=0.5)
ax.set(
    xlim=plot_range,
    xlabel='Actual Age',
    ylim=plot_range,
    ylabel='Predicted Age',
    title='Concordance in Predicted vs. Actual Age'
)
plt.show()

png

Closing Remarks

  • Many variants of above possible.
  • Goal to provide general framework to handle SomaLogic data.
  • Not definitive guide in statistical theory, etc.

MIT LICENSE


return to top