forked from doubledaibo/gancaption_iccv2017
-
Notifications
You must be signed in to change notification settings - Fork 0
/
trainGANSeqPolicy.lua
285 lines (263 loc) · 11.2 KB
/
trainGANSeqPolicy.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
require 'torch'
require 'nn'
require 'nngraph'
require 'loadcaffe'
local misc = require 'utils.misc'
require 'utils.DataLoaderSeq'
require 'dSeq'
require 'gSeq'
local netUtils = require 'utils.netUtilsSeq'
local netTrain = require 'utils.netTrainSeq'
require 'utils.optimUpdates'
require 'policyCrit'
require 'gSeqCrit'
cmd = torch.CmdLine()
cmd:text()
cmd:text('Train a adversarial network')
cmd:text()
cmd:text('Options')
cmd:option('-input_h5', 'coco_cap_dataset.h5', 'path to h5 file')
cmd:option('-val_input_h5', '', '')
cmd:option('-input_json', 'coco_cap_mappings.json', 'path to json file storing dataset stats')
--cnn setting
--cmd:option('-cnn_proto', 'vgg_deploy.prototxt', 'path to cnn prototxt file in Caffe format.')
--cmd:option('-cnn_model', 'vgg_final.caffemodel', 'path to cnn model file, Caffe format.')
--data setting
cmd:option('-d_start_from', '', 'path to a d checkpoint, Empty = don\'t')
cmd:option('-g_start_from', '', 'path to a g checkpoint')
--model setting
cmd:option('-num_layers', 1, 'number of hidden layers in rnn units')
cmd:option('-rnn_size', 512, 'size of the rnn in number of hidden nodes in each layer')
cmd:option('-hidden_sizes', {64}, 'sizes of hidden layers in decoder')
cmd:option('-input_encoding_size', 512, 'the encoding size of each node')
--cmd:option('-cnn_input_size', 224, 'input size of image')
--cmd:option('-cnn_output_size', 4096, 'length of vector outputed by cnn')
--general
cmd:option('-max_iters', -1, 'max number of iterations to run for (-1 = run forever)')
cmd:option('-batch_size', 16, 'what is the batch size for updating parameter')
cmd:option('-iter_size', 4, 'total samples per iter is iter_size * batch_size')
cmd:option('-grad_clip', 5, 'clip gradients at this value (note should be lower than usual 5 because we normalize grads by both batch and seq_length)')
cmd:option('-dropout', 0.5, 'strength of dropout in the Language Model RNN')
--cmd:option('-finetune_cnn_after', -1, 'after what iteration do we start finetuning the CNN? (-1 = disable; 0 = finetune from start)')
--optimization
cmd:option('-optim', 'adam', 'what update to use? rmsprop|sgd|sgdmom|adagrad|adam')
cmd:option('-learning_rate', 4e-4, 'learning rate')
cmd:option('-learning_rate_decay_start', -1, 'at what iteration to start decaying learning rate? (-1 = don\'t)')
cmd:option('-learning_rate_decay_every', 50000, 'every how many iterations thereafter to drop LR by half?')
cmd:option('-optim_alpha', 0.8, 'alpha for adagrad/rmsprop/mementum/adam')
cmd:option('-optim_beta', 0.999, 'beta used for adam')
cmd:option('-optim_epsilon', 1e-8, 'epsilon that goes into denominator for smoothing')
--optimization cnn
--cmd:option('-cnn_optim', 'adam', 'optimization to use for CNN')
--cmd:option('-cnn_optim_alpha', 0.8, 'alpha for momentum of CNN')
--cmd:option('-cnn_optim_beta', 0.999, 'alpha for mementum of CNN')
--cmd:option('-cnn_learning_rate', 1e-5, 'learning rate for the CNN')
--cmd:option('-cnn_weight_decay', 0, 'L2 weight decay just for the CNN')
--evaluation/checkpointing
cmd:option('-g_pre_nepoch', 5, '')
cmd:option('-d_pre_nepoch', 5, '')
cmd:option('-g_rl_niter', 1, '')
cmd:option('-d_rl_niter', 1, '')
cmd:option('-rl_niter', 100000, '')
cmd:option('-rollout_num', 16, '')
cmd:option('-save_checkpoint_every', 2500, 'how often to save a model checkpoint?')
cmd:option('-checkpoint_path', '', 'folder to save checkpoints into (empty = this folder)')
cmd:option('-backend', 'cudnn', 'nn|cudnn')
cmd:option('-id', '', 'an id identifying this run/job. used in cross-val and appended when writing progress files')
cmd:option('-seed', 2016, 'random number generator seed to use')
cmd:option('-gpuid', 0, 'which gpu to use. -1 = use CPU')
cmd:text()
local opt = cmd:parse(arg)
torch.manualSeed(opt.seed)
torch.setdefaulttensortype('torch.FloatTensor')
if opt.gpuid >= 0 then
require 'cutorch'
require 'cunn'
require 'cudnn'
cutorch.manualSeed(opt.seed)
cutorch.setDevice(opt.gpuid + 1)
end
local loader = DataLoader{h5_file = opt.input_h5, json_file = opt.input_json}
local val_loader = DataLoader{h5_file = opt.val_input_h5, json_file = opt.input_json, random = false}
local protos = {}
protos.gan_crit = nn.BCECriterion()
protos.d = netUtils.initDModel(opt, loader)
protos.g = netUtils.initGModel(opt, loader)
protos.policy_crit = nn.PolicyCrit(loader:getWordSize() + 1)
protos.g_seq_crit = nn.GSeqCrit()
protos.max_seq_length = loader:getWordSeqLength()
local label = torch.zeros(opt.batch_size, 1)
if opt.gpuid >= 0 then
-- cudnn.convert(protos.d.d.core, cudnn)
-- cudnn.convert(protos.d.d.lookup_table, cudnn)
-- cudnn.convert(protos.d.d.decoder, cudnn)
-- cudnn.convert(protos.g.g.core, cudnn)
-- cudnn.convert(protos.g.g.lookup_table, cudnn)
for k, v in pairs(protos.d) do v:cuda() end
for k, v in pairs(protos.g) do v:cuda() end
protos.gan_crit = protos.gan_crit:cuda()
protos.policy_crit = protos.policy_crit:cuda()
protos.g_seq_crit = protos.g_seq_crit:cuda()
label = label:cuda()
end
local g_params, g_grad_params = protos.g.g:getParameters()
local d_params, d_grad_params = protos.d.d:getParameters()
--local g_cnn_params, g_cnn_grad_params = protos.g.cnn:getParameters()
--local d_cnn_params, d_cnn_grad_params = protos.d.cnn:getParameters()
--local g_cnn_proj_params, g_cnn_proj_grad_params = protos.g.cnn_proj:getParameters()
--local d_cnn_proj_params, d_cnn_proj_grad_params = protos.d.cnn_proj:getParameters()
--print('total number of parameters in G:', g_params:nElement())
--print('total number of parameters in D:', d_params:nElement())
assert(g_params:nElement() == g_grad_params:nElement())
assert(d_params:nElement() == d_grad_params:nElement())
local policy_g = protos.g.g:clone()
local policy_g_params, policy_g_grad_params = policy_g:getParameters()
--thin_g.core:share(protos.g.g.core, 'weight', 'bias')
--netUtils.sanitizeGradients(thin_g.core)
--local thin_g_cnn = protos.g.cnn:clone('weight', 'bias')
--netUtils.sanitizeGradients(thin_g_cnn)
--local thin_d = protos.d.d:clone()
--thin_d.core:share(protos.d.d.core, 'weight', 'bias')
--netUtils.sanitizeGradients(thin_d.core)
--thin_d.decoder:share(protos.d.d.decoder, 'weight', 'bias')
--netUtils.sanitizeGradients(thin_d.decoder)
--thin_d.encoding:share(protos.d.d.encoding, 'weight')
--netUtils.sanitizeGradients(thin_d.encoding)
--local thin_d_cnn = protos.d.cnn:clone('weight', 'bias')
--netUtils.sanitizeGradients(thin_d_cnn)
protos.g.g:createClones()
protos.d.d:createClones()
collectgarbage()
local num_sample = loader:getNumSample()
local num_batch = torch.floor(num_sample / opt.batch_size)
-------------------------------------------
-------------------------------------------
-- local learning_rate = opt.learning_rate
-- local cnn_learning_rate = opt.cnn_learning_rate
-- if iter > opt.learning_rate_decay_start and opt.learning_rate_decay_start >= 0 then
-- local frac = (iter - opt.finetune_cnn_after) / opt.learning_rate_decay_every
-- local decay_factor = math.pow(0.5, frac)
-- cnn_learning_rate = cnn_learning_rate * decay_factor
-- frac = (iter - opt.learning_rate_decay_start) / opt.learning_rate_decay_every
-- decay_factor = math.pow(0.5, frac)
-- learning_rate = learning_rate * decay_factor
-- end
learning_rate = opt.learning_rate
if string.len(opt.g_start_from) == 0 then
print("pretraining g...")
local g_optim_state = {}
local loss
for epoch = 1, opt.g_pre_nepoch do
protos.g.g:training()
for i = 1, num_batch do
g_grad_params:zero()
loss = netTrain.gTrain(loader, opt, protos)
if i % 10 == 0 then
print("epoch: " .. epoch .. ' / ' .. opt.d_pre_nepoch .. ', ' .. i .. ' / ' .. num_batch .. ', g loss: ' .. loss)
collectgarbage()
end
g_grad_params:clamp(-opt.grad_clip, opt.grad_clip)
netTrain.updateParams(opt.optim, g_params, g_grad_params, learning_rate, opt.optim_alpha, opt.optim_beta, opt.optim_epsilon, g_optim_state)
-- if i % 1000 == 0 then
-- loss = 0
-- protos.g.g:evaluate()
-- val_loader:resetIterator()
-- for i = 1, 10 do
-- loss = loss + netTrain.gTrain(val_loader, opt, protos)
-- end
-- print("epoch: " .. epoch .. ' val g loss: ' .. loss / 10)
-- protos.g.g:training()
-- end
end
--val--
loss = 0
protos.g.g:evaluate()
val_loader:resetIterator()
for i = 1, 10 do
loss = loss + netTrain.gTrain(val_loader, opt, protos)
end
print("epoch: " .. epoch .. ' val g loss: ' .. loss / 10)
end
checkpoint_path = path.join(opt.checkpoint_path, 'model_' .. opt.id .. '_pre_g.t7')
netTrain.saveGCheckpoint(protos, opt, checkpoint_path)
end
if string.len(opt.d_start_from) == 0 then
print("pretraining d...")
local d_optim_state = {}
for epoch = 1, opt.d_pre_nepoch do
protos.g.g:evaluate()
protos.d.d:training()
for i = 1, num_batch do
d_grad_params:zero()
loss = netTrain.dTrain(loader, opt, protos, label)
if i % 10 == 0 then
print("epoch: " .. epoch .. ' / ' .. opt.d_pre_nepoch .. ', ' .. i .. ' / ' .. num_batch .. ', d loss: ' .. loss)
collectgarbage()
end
d_grad_params:clamp(-opt.grad_clip, opt.grad_clip)
netTrain.updateParams(opt.optim, d_params, d_grad_params, learning_rate, opt.optim_alpha, opt.optim_beta, opt.optim_epsilon, d_optim_state)
end
--val--
loss = 0
protos.d.d:evaluate()
val_loader:resetIterator()
for i = 1, 10 do
loss = loss + netTrain.dEval(val_loader, opt, protos, label)
end
print("epoch: " .. epoch .. ' val d loss: ' .. loss / 10)
end
checkpoint_path = path.join(opt.checkpoint_path, 'model_' .. opt.id .. '_pre_d.t7')
netTrain.saveDCheckpoint(protos, opt, checkpoint_path)
end
print("rl training...")
local g_optim_state = {}
local d_optim_state = {}
policy_g:evaluate()
policy_g_params:copy(g_params)
local gen_x
for iter = 1, opt.rl_niter do
protos.g.g:training()
protos.d.d:evaluate()
for i = 1, opt.g_rl_niter do
g_grad_params:zero()
loss = netTrain.rlLearning(loader, opt, protos, policy_g)
g_grad_params:clamp(-opt.grad_clip, opt.grad_clip)
netTrain.updateParams(opt.optim, g_params, g_grad_params, learning_rate, opt.optim_alpha, opt.optim_beta, opt.optim_epsilon, g_optim_state)
print("iter: " .. iter .. ' / ' .. opt.rl_niter .. ', g loss: ' .. loss)
end
--val--
loss = 0
protos.g.g:evaluate()
val_loader:resetIterator()
for i = 1, 10 do
loss = loss + netTrain.gEval(val_loader, opt, protos, label)
end
print("epoch: " .. iter .. ' val g loss: ' .. loss / 10)
-------
policy_g_params:copy(g_params)
-- protos.g.g:evaluate()
protos.d.d:training()
for i = 1, opt.d_rl_niter do
d_grad_params:zero()
loss = netTrain.dTrain(loader, opt, protos, label)
if i % 10 == 0 then
print("iter: " .. i .. ' / ' .. opt.d_rl_niter .. ', d loss: ' .. loss)
collectgarbage()
end
d_grad_params:clamp(-opt.grad_clip, opt.grad_clip)
netTrain.updateParams(opt.optim, d_params, d_grad_params, learning_rate, opt.optim_alpha, opt.optim_beta, opt.optim_epsilon, d_optim_state)
end
loss = 0
protos.d.d:evaluate()
val_loader:resetIterator()
for i = 1, 10 do
loss = loss + netTrain.dEval(val_loader, opt, protos, label)
end
print("epoch: " .. iter .. ' val d loss: ' .. loss / 10)
if iter % 1000 == 0 then
checkpoint_path = path.join(opt.checkpoint_path, 'model_' .. opt.id .. '_g_iter' .. iter .. '.t7')
netTrain.saveGCheckpoint(protos, opt, checkpoint_path)
checkpoint_path = path.join(opt.checkpoint_path, 'model_' .. opt.id .. '_d_iter' .. iter .. '.t7')
netTrain.saveDCheckpoint(protos, opt, checkpoint_path)
end
end