forked from shangjingbo1226/AutoPhrase
-
Notifications
You must be signed in to change notification settings - Fork 0
/
auto_phrase.sh
executable file
·156 lines (135 loc) · 6.47 KB
/
auto_phrase.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#!/bin/bash
# In effect, the commands below check to see if we're running in a Docker container--in that case, the (default)
# "data" and "models" directories will have been renamed, in order to avoid conflicts with mounted directories
# with the same names.
#
# DATA_DIR is the default directory for reading data files. Because this directory contains not only the default
# dataset, but also language-specific files and "BAD_POS_TAGS.TXT", in most cases it's a bad idea to change it.
# However, when this script is run from a Docker container, it's perfectly fine for the user to mount an external
# directory called "data" and read the corpus from there, since the directory holding the language-specific files
# and "BAD_POS_TAGS.txt" will have been renamed to "default_data".
if [ -d "default_data" ]; then
DATA_DIR=${DATA_DIR:- default_data}
else
DATA_DIR=${DATA_DIR:- data}
fi
# MODEL is the directory in which the resulting model will be saved.
if [ -d "models" ]; then
MODELS_DIR=${MODELS_DIR:- models}
else
MODELS_DIR=${MODELS_DIR:- default_models}
fi
MODEL=${MODEL:- ${MODELS_DIR}/DBLP}
# RAW_TRAIN is the input of AutoPhrase, where each line is a single document.
DEFAULT_TRAIN=${DATA_DIR}/EN/DBLP.txt
RAW_TRAIN=${RAW_TRAIN:- $DEFAULT_TRAIN}
# When FIRST_RUN is set to 1, AutoPhrase will run all preprocessing.
# Otherwise, AutoPhrase directly starts from the current preprocessed data in the tmp/ folder.
FIRST_RUN=${FIRST_RUN:- 1}
# POS_TAGGING_MODE: 0, a simple length penalty mode as the same as SegPhrase will be used.
# 1, AutoPhrase will automatically POS tag your text.
# 2, AutoPhrase expects an alreaedy tokenized and POS tagged text.
POS_TAGGING_MODE=${POS_TAGGING_MODE:- 1}
# A hard threshold of raw frequency is specified for frequent phrase mining, which will generate a candidate set.
MIN_SUP=${MIN_SUP:- 10}
# You can also specify how many threads can be used for AutoPhrase
THREAD=${THREAD:- 10}
COMPILE=${COMPILE:- 1}
### Begin: Suggested Parameters ###
MAX_POSITIVES=-1
LABEL_METHOD=DPDN
RAW_LABEL_FILE=${RAW_LABEL_FILE:-""}
### End: Suggested Parameters ###
green=`tput setaf 2`
reset=`tput sgr0`
if [ $COMPILE -eq 1 ]; then
echo ${green}===Compilation===${reset}
bash compile.sh
fi
mkdir -p tmp
mkdir -p ${MODEL}
if [ $RAW_TRAIN == $DEFAULT_TRAIN ] && [ ! -e $DEFAULT_TRAIN ]; then
echo ${green}===Downloading Toy Dataset===${reset}
curl http://dmserv2.cs.illinois.edu/data/DBLP.txt.gz --output ${DEFAULT_TRAIN}.gz
gzip -d ${DEFAULT_TRAIN}.gz -f
fi
### END Compilation###
TOKENIZER="-cp .:tools/tokenizer/lib/*:tools/tokenizer/resources/:tools/tokenizer/build/ Tokenizer"
#TOKENIZER="-cp .;tools/tokenizer/lib/*;tools/tokenizer/resources/;tools/tokenizer/build/ Tokenizer"
TOKEN_MAPPING=tmp/token_mapping.txt
if [ $FIRST_RUN -eq 1 ]; then
echo ${green}===Tokenization===${reset}
TOKENIZED_TRAIN=tmp/tokenized_train.txt
# CASE=tmp/case_tokenized_train.txt
echo -ne "Current step: Tokenizing input file...\033[0K\r"
if [ $POS_TAGGING_MODE -eq 2 ]; then
time java $TOKENIZER -m train -i $RAW_TRAIN -o $TOKENIZED_TRAIN -t $TOKEN_MAPPING -c N -thread $THREAD -delimiters " "
else
time java $TOKENIZER -m train -i $RAW_TRAIN -o $TOKENIZED_TRAIN -t $TOKEN_MAPPING -c N -thread $THREAD
fi
fi
LANGUAGE=`cat tmp/language.txt`
LABEL_FILE=tmp/labels.txt
if [ $FIRST_RUN -eq 1 ]; then
echo -ne "Detected Language: $LANGUAGE\033[0K\n"
TOKENIZED_STOPWORDS=tmp/tokenized_stopwords.txt
TOKENIZED_ALL=tmp/tokenized_all.txt
TOKENIZED_QUALITY=tmp/tokenized_quality.txt
STOPWORDS=$DATA_DIR/$LANGUAGE/stopwords.txt
ALL_WIKI_ENTITIES=$DATA_DIR/$LANGUAGE/wiki_all.txt
QUALITY_WIKI_ENTITIES=$DATA_DIR/$LANGUAGE/wiki_quality.txt
echo -ne "Current step: Tokenizing stopword file...\033[0K\r"
java $TOKENIZER -m test -i $STOPWORDS -o $TOKENIZED_STOPWORDS -t $TOKEN_MAPPING -c N -thread $THREAD
echo -ne "Current step: Tokenizing wikipedia phrases...\033[0K\n"
java $TOKENIZER -m test -i $ALL_WIKI_ENTITIES -o $TOKENIZED_ALL -t $TOKEN_MAPPING -c N -thread $THREAD
java $TOKENIZER -m test -i $QUALITY_WIKI_ENTITIES -o $TOKENIZED_QUALITY -t $TOKEN_MAPPING -c N -thread $THREAD
fi
### END Tokenization ###
if [[ $RAW_LABEL_FILE = *[!\ ]* ]]; then
echo -ne "Current step: Tokenizing expert labels...\033[0K\n"
java $TOKENIZER -m test -i $RAW_LABEL_FILE -o $LABEL_FILE -t $TOKEN_MAPPING -c N -thread $THREAD
else
echo -ne "No provided expert labels.\033[0K\n"
fi
if [ ! $LANGUAGE == "JA" ] && [ ! $LANGUAGE == "CN" ] && [ ! $LANGUAGE == "OTHER" ] && [ $FIRST_RUN -eq 1 ]; then
if [ $POS_TAGGING_MODE -eq 1 ]; then
echo ${green}===Part-Of-Speech Tagging===${reset}
RAW=tmp/raw_tokenized_train.txt
export THREAD LANGUAGE RAW
bash ./tools/treetagger/pos_tag.sh
mv tmp/pos_tags.txt tmp/pos_tags_tokenized_train.txt
elif [ $POS_TAGGING_MODE -eq 2 ]; then
echo ${green}===Loading Part-Of-Speech Tagged file===${reset}
cp $DATA_DIR/$LANGUAGE/pos_tags.txt tmp/pos_tags_tokenized_train.txt
fi
fi
### END Part-Of-Speech Tagging ###
echo ${green}===AutoPhrasing===${reset}
if [[ $POS_TAGGING_MODE -eq 1 || $POS_TAGGING_MODE -eq 2 ]]; then
time ./bin/segphrase_train \
--pos_tag \
--thread $THREAD \
--pos_prune ${DATA_DIR}/BAD_POS_TAGS.txt \
--label_method $LABEL_METHOD \
--label $LABEL_FILE \
--max_positives $MAX_POSITIVES \
--min_sup $MIN_SUP
else
time ./bin/segphrase_train \
--thread $THREAD \
--label_method $LABEL_METHOD \
--label $LABEL_FILE \
--max_positives $MAX_POSITIVES \
--min_sup $MIN_SUP
fi
echo ${green}===Saving Model and Results===${reset}
cp tmp/segmentation.model ${MODEL}/segmentation.model
cp tmp/token_mapping.txt ${MODEL}/token_mapping.txt
cp tmp/language.txt ${MODEL}/language.txt
### END AutoPhrasing ###
echo ${green}===Generating Output===${reset}
java $TOKENIZER -m translate -i tmp/final_quality_multi-words.txt -o ${MODEL}/AutoPhrase_multi-words.txt -t $TOKEN_MAPPING -c N -thread $THREAD
java $TOKENIZER -m translate -i tmp/final_quality_unigrams.txt -o ${MODEL}/AutoPhrase_single-word.txt -t $TOKEN_MAPPING -c N -thread $THREAD
java $TOKENIZER -m translate -i tmp/final_quality_salient.txt -o ${MODEL}/AutoPhrase.txt -t $TOKEN_MAPPING -c N -thread $THREAD
# java $TOKENIZER -m translate -i tmp/distant_training_only_salient.txt -o results/DistantTraning.txt -t $TOKEN_MAPPING -c N -thread $THREAD
### END Generating Output for Checking Quality ###