-
Notifications
You must be signed in to change notification settings - Fork 0
/
linear_regression.py
35 lines (28 loc) · 994 Bytes
/
linear_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from turtle import color
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
dataset = pd.read_csv('Salary_Data.csv')
x = dataset.iloc[:, :-1].values
y = dataset.iloc[:, -1].values
x_train, x_test, y_train, y_test = train_test_split(
x, y, test_size=1/3, random_state=0)
regressor = LinearRegression()
regressor.fit(x_train, y_train)
y_pred = regressor.predict(x_test)
# Visualising the training set
plt.scatter(x_train, y_train, color='red')
plt.plot(x_train, regressor.predict(x_train), color='blue')
plt.title('salary vs Experience (Training set)')
plt.xlabel('Years of Experience')
plt.ylabel('Salary')
plt.show()
# Visualising the test set
plt.scatter(x_test, y_test, color='red')
plt.plot(x_train, regressor.predict(x_train), color='blue')
plt.title('salary vs Experience (Training set)')
plt.xlabel('Years of Experience')
plt.ylabel('Salary')
plt.show()