-
Notifications
You must be signed in to change notification settings - Fork 9
/
kmeans_quantize.py
270 lines (244 loc) · 12.6 KB
/
kmeans_quantize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import os
import pdb
from tqdm import tqdm
import time
import torch
import numpy as np
from torch import nn
import torch.nn.functional as F
class Quantize_kMeans():
def __init__(self, num_clusters=100, num_iters=10):
self.num_clusters = num_clusters
self.num_kmeans_iters = num_iters
self.nn_index = torch.empty(0)
self.centers = torch.empty(0)
self.vec_dim = 0
self.cluster_ids = torch.empty(0)
self.cls_ids = torch.empty(0)
self.excl_clusters = []
self.excl_cluster_ids = []
self.cluster_len = torch.empty(0)
self.max_cnt = 0
self.n_excl_cls = 0
def get_dist(self, x, y, mode='sq_euclidean'):
"""Calculate distance between all vectors in x and all vectors in y.
x: (m, dim)
y: (n, dim)
dist: (m, n)
"""
if mode == 'sq_euclidean_chunk':
step = 65536
if x.shape[0] < step:
step = x.shape[0]
dist = []
for i in range(np.ceil(x.shape[0] / step).astype(int)):
dist.append(torch.cdist(x[(i*step): (i+1)*step, :].unsqueeze(0), y.unsqueeze(0))[0])
dist = torch.cat(dist, 0)
elif mode == 'sq_euclidean':
dist = torch.cdist(x.unsqueeze(0).detach(), y.unsqueeze(0).detach())[0]
return dist
# Update centers in non-cluster assignment iters using cached nn indices.
def update_centers(self, feat):
feat = feat.detach().reshape(-1, self.vec_dim)
# Update all clusters except the excluded ones in a single operation
# Add a dummy element with zeros at the end
feat = torch.cat([feat, torch.zeros_like(feat[:1]).cuda()], 0)
self.centers = torch.sum(feat[self.cluster_ids, :].reshape(
self.num_clusters, self.max_cnt, -1), dim=1)
if len(self.excl_cluster_ids) > 0:
for i, cls in enumerate(self.excl_clusters):
# Division by num_points in cluster is done during the one-shot averaging of all
# clusters below. Only the extra elements in the bigger clusters are added here.
self.centers[cls] += torch.sum(feat[self.excl_cluster_ids[i], :], dim=0)
self.centers /= (self.cluster_len + 1e-6)
# Update centers during cluster assignment using mask matrix multiplication
# Mask is obtained from distance matrix
def update_centers_(self, feat, cluster_mask=None, nn_index=None, avg=False):
feat = feat.detach().reshape(-1, self.vec_dim)
centers = (cluster_mask.T @ feat)
if avg:
self.centers /= counts.unsqueeze(-1)
return centers
def equalize_cluster_size(self):
"""Make the size of all the clusters the same by appending dummy elements.
"""
# Find the maximum number of elements in a cluster, make size of all clusters
# equal by appending dummy elements until size is equal to size of max cluster.
# If max is too large, exclude it and consider the next biggest. Use for loop for
# the excluded clusters and a single operation for the remaining ones for
# updating the cluster centers.
unq, n_unq = torch.unique(self.nn_index, return_counts=True)
# Find max cluster size and exclude clusters greater than a threshold
topk = 100
if len(n_unq) < topk:
topk = len(n_unq)
max_cnt_topk, topk_idx = torch.topk(n_unq, topk)
self.max_cnt = max_cnt_topk[0]
idx = 0
self.excl_clusters = []
self.excl_cluster_ids = []
while(self.max_cnt > 5000):
self.excl_clusters.append(unq[topk_idx[idx]])
idx += 1
if idx < topk:
self.max_cnt = max_cnt_topk[idx]
else:
break
self.n_excl_cls = len(self.excl_clusters)
self.excl_clusters = sorted(self.excl_clusters)
# Store the indices of elements for each cluster
all_ids = []
cls_len = []
for i in range(self.num_clusters):
cur_cluster_ids = torch.where(self.nn_index == i)[0]
# For excluded clusters, use only the first max_cnt elements
# for averaging along with other clusters. Separately average the
# remaining elements just for the excluded clusters.
cls_len.append(torch.Tensor([len(cur_cluster_ids)]))
if i in self.excl_clusters:
self.excl_cluster_ids.append(cur_cluster_ids[self.max_cnt:])
cur_cluster_ids = cur_cluster_ids[:self.max_cnt]
# Append dummy elements to have same size for all clusters
all_ids.append(torch.cat([cur_cluster_ids, -1 * torch.ones((self.max_cnt - len(cur_cluster_ids)),
dtype=torch.long).cuda()]))
all_ids = torch.cat(all_ids).type(torch.long)
cls_len = torch.cat(cls_len).type(torch.long)
self.cluster_ids = all_ids
self.cluster_len = cls_len.unsqueeze(1).cuda()
self.cls_ids = self.nn_index
def cluster_assign(self, feat, feat_scaled=None):
# quantize with kmeans
feat = feat.detach()
feat = feat.reshape(-1, self.vec_dim)
if feat_scaled is None:
feat_scaled = feat
scale = feat[0] / (feat_scaled[0] + 1e-8)
if len(self.centers) == 0:
self.centers = feat[torch.randperm(feat.shape[0])[:self.num_clusters], :]
# start kmeans
chunk = True
counts = torch.zeros(self.num_clusters, dtype=torch.float32).cuda() + 1e-6
centers = torch.zeros_like(self.centers)
for iteration in range(self.num_kmeans_iters):
# chunk for memory issues
if chunk:
self.nn_index = None
i = 0
chunk = 10000
while True:
dist = self.get_dist(feat[i*chunk:(i+1)*chunk, :], self.centers)
curr_nn_index = torch.argmin(dist, dim=-1)
# Assign a single cluster when distance to multiple clusters is same
dist = F.one_hot(curr_nn_index, self.num_clusters).type(torch.float32)
curr_centers = self.update_centers_(feat[i*chunk:(i+1)*chunk, :], dist, curr_nn_index, avg=False)
counts += dist.detach().sum(0) + 1e-6
centers += curr_centers
if self.nn_index == None:
self.nn_index = curr_nn_index
else:
self.nn_index = torch.cat((self.nn_index, curr_nn_index), dim=0)
i += 1
if i*chunk > feat.shape[0]:
break
self.centers = centers / counts.unsqueeze(-1)
# Reinitialize to 0
centers[centers != 0] = 0.
counts[counts > 0.1] = 0.
if chunk:
self.nn_index = None
i = 0
# chunk = 100000
while True:
dist = self.get_dist(feat_scaled[i * chunk:(i + 1) * chunk, :], self.centers)
curr_nn_index = torch.argmin(dist, dim=-1)
if self.nn_index == None:
self.nn_index = curr_nn_index
else:
self.nn_index = torch.cat((self.nn_index, curr_nn_index), dim=0)
i += 1
if i * chunk > feat.shape[0]:
break
self.equalize_cluster_size()
def rescale(self, feat, scale=None):
"""Scale the feature to be in the range [-1, 1] by dividing by its max value.
"""
if scale is None:
return feat / (abs(feat).max(dim=0)[0] + 1e-8)
else:
return feat / (scale + 1e-8)
def forward_pos(self, gaussian, assign=False):
if self.vec_dim == 0:
self.vec_dim = gaussian._xyz.shape[1]
if assign:
self.cluster_assign(gaussian._xyz)
else:
self.update_centers(gaussian._xyz)
sampled_centers = torch.gather(self.centers, 0, self.nn_index.unsqueeze(-1).repeat(1, self.vec_dim))
gaussian._xyz_q = gaussian._xyz - gaussian._xyz.detach() + sampled_centers
def forward_dc(self, gaussian, assign=False):
if self.vec_dim == 0:
self.vec_dim = gaussian._features_dc.shape[1] * gaussian._features_dc.shape[2]
if assign:
self.cluster_assign(gaussian._features_dc)
else:
self.update_centers(gaussian._features_dc)
sampled_centers = torch.gather(self.centers, 0, self.nn_index.unsqueeze(-1).repeat(1, self.vec_dim))
gaussian._features_dc_q = gaussian._features_dc - gaussian._features_dc.detach() + sampled_centers.reshape(-1, 1, 3)
def forward_frest(self, gaussian, assign=False):
if self.vec_dim == 0:
self.vec_dim = gaussian._features_rest.shape[1] * gaussian._features_rest.shape[2]
if assign:
self.cluster_assign(gaussian._features_rest)
else:
self.update_centers(gaussian._features_rest)
deg = gaussian._features_rest.shape[1]
sampled_centers = torch.gather(self.centers, 0, self.nn_index.unsqueeze(-1).repeat(1, self.vec_dim))
gaussian._features_rest_q = gaussian._features_rest - gaussian._features_rest.detach() + sampled_centers.reshape(-1, deg, 3)
def forward_scale(self, gaussian, assign=False):
if self.vec_dim == 0:
self.vec_dim = gaussian._scaling.shape[1]
if assign:
self.cluster_assign(gaussian._scaling)
else:
self.update_centers(gaussian._scaling)
sampled_centers = torch.gather(self.centers, 0, self.nn_index.unsqueeze(-1).repeat(1, self.vec_dim))
gaussian._scaling_q = gaussian._scaling - gaussian._scaling.detach() + sampled_centers
def forward_rot(self, gaussian, assign=False):
if self.vec_dim == 0:
self.vec_dim = gaussian._rotation.shape[1]
if assign:
self.cluster_assign(gaussian._rotation)
else:
self.update_centers(gaussian._rotation)
sampled_centers = torch.gather(self.centers, 0, self.nn_index.unsqueeze(-1).repeat(1, self.vec_dim))
gaussian._rotation_q = gaussian._rotation - gaussian._rotation.detach() + sampled_centers
def forward_scale_rot(self, gaussian, assign=False):
"""Combine both scaling and rotation for a single k-Means"""
if self.vec_dim == 0:
self.vec_dim = gaussian._rotation.shape[1] + gaussian._scaling.shape[1]
feat_scaled = torch.cat([self.rescale(gaussian._scaling), self.rescale(gaussian._rotation)], 1)
feat = torch.cat([gaussian._scaling, gaussian._rotation], 1)
if assign:
self.cluster_assign(feat, feat_scaled)
else:
self.update_centers(feat)
sampled_centers = torch.gather(self.centers, 0, self.nn_index.unsqueeze(-1).repeat(1, self.vec_dim))
gaussian._scaling_q = gaussian._scaling - gaussian._scaling.detach() + sampled_centers[:, :3]
gaussian._rotation_q = gaussian._rotation - gaussian._rotation.detach() + sampled_centers[:, 3:]
def forward_dcfrest(self, gaussian, assign=False):
"""Combine both features_dc and rest for a single k-Means"""
if self.vec_dim == 0:
self.vec_dim = (gaussian._features_rest.shape[1] * gaussian._features_rest.shape[2] +
gaussian._features_dc.shape[1] * gaussian._features_dc.shape[2])
if assign:
self.cluster_assign(torch.cat([gaussian._features_dc, gaussian._features_rest], 1))
else:
self.update_centers(torch.cat([gaussian._features_dc, gaussian._features_rest], 1))
deg = gaussian._features_rest.shape[1]
sampled_centers = torch.gather(self.centers, 0, self.nn_index.unsqueeze(-1).repeat(1, self.vec_dim))
gaussian._features_dc_q = gaussian._features_dc - gaussian._features_dc.detach() + sampled_centers[:, :3].reshape(-1, 1, 3)
gaussian._features_rest_q = gaussian._features_rest - gaussian._features_rest.detach() + sampled_centers[:, 3:].reshape(-1, deg, 3)
def replace_with_centers(self, gaussian):
deg = gaussian._features_rest.shape[1]
sampled_centers = torch.gather(self.centers, 0, self.nn_index.unsqueeze(-1).repeat(1, self.vec_dim))
gaussian._features_rest = gaussian._features_rest - gaussian._features_rest.detach() + sampled_centers.reshape(-1, deg, 3)