-
Notifications
You must be signed in to change notification settings - Fork 13
/
ranker.py
291 lines (239 loc) · 10 KB
/
ranker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import random
from typing import Dict, List
import numpy as np
import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
from scipy.stats import ttest_ind
from sklearn.metrics import roc_auc_score
from tqdm import tqdm, trange
import wandb
from serve.utils_clip import get_embeddings
from serve.utils_llm import get_llm_output
from serve.utils_vlm import get_vlm_output
def plot_distributions(similarity_A_C, similarity_B_C, hypothesis=""):
"""
Plots the distributions of cos sim to hypothesis for each group.
"""
# Convert arrays to 1D if they're 2D
similarity_A_C = np.array(similarity_A_C).ravel()
similarity_B_C = np.array(similarity_B_C).ravel()
# Create a combined list of all scores and a list of labels to indicate group membership
all_scores = list(similarity_A_C) + list(similarity_B_C)
labels = ["Group A"] * len(similarity_A_C) + ["Group B"] * len(similarity_B_C)
# Create a DataFrame for seaborn plotting
df = pd.DataFrame({"Group": labels, "Similarity to C": all_scores})
# Set up the figure with 3 subplots
fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(20, 5))
# Histogram
ax[0].hist(similarity_A_C, bins=30, alpha=0.5, label="Group A", density=True)
ax[0].hist(similarity_B_C, bins=30, alpha=0.5, label="Group B", density=True)
ax[0].set_title(f"Histogram of Cosine Similarities to \n{hypothesis}")
ax[0].set_ylabel("Density")
ax[0].legend()
# KDE plot
sns.kdeplot(similarity_A_C, fill=True, ax=ax[1], label="Group A")
sns.kdeplot(similarity_B_C, fill=True, ax=ax[1], label="Group B")
ax[1].set_title(
f"Kernel Density Estimation of Cosine Similarities to \n{hypothesis}"
)
ax[1].set_ylabel("Density")
# Boxplot
sns.boxplot(x="Group", y="Similarity to C", data=df, ax=ax[2])
ax[2].set_title(f"Boxplot of Cosine Similarities to \n{hypothesis}")
# Adjust layout
plt.tight_layout()
return fig
def classify(similarity_A_C, similarity_B_C, threshold=0.3):
"""
Given two arrays of cos sim scores, classify each item of each group as containing concept C or not.
Return P(hyp in A) - P(hyp in B)
"""
similarity_A_C = np.array(similarity_A_C)
similarity_B_C = np.array(similarity_B_C)
# print(
# f"avg(cos sim A, cos sim B) = {[np.mean(similarity_A_C), np.mean(similarity_B_C)]} \t Max(cos sim A, cos sim B) = {[np.max(similarity_A_C), np.max(similarity_B_C)]}"
# )
percent_correct_a = sum(similarity_A_C > threshold) / len(similarity_A_C)
percent_correct_b = sum(similarity_B_C > threshold) / len(similarity_B_C)
# print(f"Percent correct A, B {[percent_correct_a, percent_correct_b]}")
return percent_correct_a - percent_correct_b
def compute_auroc(similarity_A_C, similarity_B_C):
similarity_A_C = np.array(similarity_A_C)
similarity_B_C = np.array(similarity_B_C)
# Create labels based on the sizes of the input arrays
labels_A = [1] * similarity_A_C.shape[0]
labels_B = [0] * similarity_B_C.shape[0]
# Concatenate scores and labels using numpy's concatenate
all_scores = np.concatenate([similarity_A_C, similarity_B_C], axis=0).ravel()
all_labels = labels_A + labels_B
# Compute AUROC
auroc = roc_auc_score(all_labels, all_scores)
return auroc
def t_test(d_A, d_B):
d_A = np.array(d_A)
d_B = np.array(d_B)
# Assuming you've already defined your similarity scores d_A and d_B
t_stat, p_value = ttest_ind(d_A, d_B, equal_var=False)
# Decision
alpha = 0.05
if p_value < alpha:
# print("** Reject the null hypothesis - there's a significant difference between the groups. **")
return True, p_value
else:
# print("Fail to reject the null hypothesis - there's no significant difference between the groups.")
return False, p_value
class Ranker:
def __init__(self, args: Dict):
self.args = args
def score_hypothesis(self, hypothesis: str, dataset: List[dict]) -> List[float]:
raise NotImplementedError
def rerank_hypotheses(
self, hypotheses: List[str], dataset1: List[dict], dataset2: List[dict]
) -> List[dict]:
if len(dataset1) > self.args["max_num_samples"]:
random.seed(self.args["seed"])
dataset1 = random.sample(dataset1, self.args["max_num_samples"])
if len(dataset2) > self.args["max_num_samples"]:
random.seed(self.args["seed"])
dataset2 = random.sample(dataset2, self.args["max_num_samples"])
scored_hypotheses = []
for hypothesis in tqdm(hypotheses):
scores1 = self.score_hypothesis(hypothesis, dataset1)
scores2 = self.score_hypothesis(hypothesis, dataset2)
metrics = self.compute_metrics(scores1, scores2, hypothesis)
scored_hypotheses.append(metrics)
scored_hypotheses = sorted(
scored_hypotheses, key=lambda x: x["auroc"], reverse=True
)
return scored_hypotheses
def compute_metrics(
self, scores1: List[float], scores2: List[float], hypothesis: str
) -> dict:
metrics = {}
metrics["hypothesis"] = hypothesis
metrics["score1"] = np.mean(scores1)
metrics["score2"] = np.mean(scores2)
metrics["diff"] = metrics["score1"] - metrics["score2"]
metrics["t_stat"], metrics["p_value"] = t_test(scores1, scores2)
metrics["auroc"] = compute_auroc(scores1, scores2)
metrics["correct_delta"] = classify(
scores1, scores2, threshold=self.args["classify_threshold"]
)
metrics["distribution"] = wandb.Image(
plot_distributions(scores1, scores2, hypothesis=hypothesis)
)
return metrics
class CLIPRanker(Ranker):
def __init__(self, args: Dict):
super().__init__(args)
def score_hypothesis(self, hypothesis: str, dataset: List[dict]) -> List[float]:
image_features = get_embeddings(
[item["path"] for item in dataset], self.args["clip_model"], "image"
)
text_features = get_embeddings([hypothesis], self.args["clip_model"], "text")
similarity = image_features @ text_features.T
scores = similarity.squeeze(1).tolist()
return scores
class VLMRanker(Ranker):
def __init__(self, args: Dict):
super().__init__(args)
def score_hypothesis(self, hypothesis: str, dataset: List[dict]) -> List[float]:
scores = []
invalid_scores = []
for i in trange(0, len(dataset)):
item = dataset[i]
prompt = f"Does this image contain {hypothesis.replace('and ', '')}?" # TODO: why this prompt
output = get_vlm_output(item["path"], prompt, self.args["model"])
if "yes" in output.lower():
scores.append(1)
elif "no" in output.lower():
scores.append(0)
else:
invalid_scores.append(output)
print(f"Percent Invalid {len(invalid_scores) / len(dataset)}")
return scores
class LLMRanker(Ranker):
def __init__(self, args: Dict):
super().__init__(args)
def score_hypothesis(self, hypothesis: str, dataset: List[dict]) -> List[float]:
scores = []
invalid_scores = []
for i in trange(0, len(dataset)):
item = dataset[i]
caption = (
get_vlm_output(
item["path"],
self.args["captioner_prompt"],
self.args["captioner_model"],
)
.replace("\n", " ")
.strip()
)
prompt = f"""Given a caption and a concept, respond with yes or no.
Here are 5 examples for the concept "spider and a flower":
INPUT: a spider sitting on top of a purple flower
OUTPUT: yes
INPUT: a yellow and black spider with a web in the background
OUTPUT: no
INPUT: a arachnid with a white flower
OUTPUT: yes
INPUT: a spider is walking on the ground in the grass
OUTPUT: no
INPUT: two yellow and black spiders
OUTPUT: no
Here are 6 examples for the concept "an ipod in the forest":
INPUT: a smartphone in the forest
OUTPUT: yes
INPUT: a white apple ipad sitting on top of a wooden table
OUTPUT: no
INPUT: an ipod near some trees
OUTPUT: yes
INPUT: a smartphone with apps
OUTPUT: no
INPUT: a pink mp3 player sitting on top of a book
OUTPUT: no
INPUT: an ipod sitting on a white surface
OUTPUT: no
Given the caption "{caption}" and the concept "{hypothesis}", respond with either the word yes or no ONLY.
OUTPUT:"""
output = get_llm_output(prompt, self.args["model"])
if "yes" in output.lower():
scores.append(1)
elif "no" in output.lower():
scores.append(0)
else:
invalid_scores.append(output)
print(f"Percent Invalid {len(invalid_scores) / len(dataset)}")
return scores
class NullRanker(Ranker):
def __init__(self, args: Dict):
super().__init__(args)
def score_hypothesis(self, hypothesis: str, dataset: List[dict]) -> List[float]:
return [0.0] * len(dataset)
def test_rankers():
args = {
"clip_model": "ViT-bigG-14",
"clip_dataset": "laion2b_s39b_b160k",
"model": "llava",
"batch_size": 32,
"classify_threshold": 0.3,
}
dataset = pd.read_csv("data/diffusion_plates.csv")
dataset = dataset.to_dict("records")
dataset1 = [item for item in dataset if item["set"] == "a_plate"][:20]
dataset2 = [item for item in dataset if item["set"] == "a_dinner_plate"][:20]
for item in dataset1 + dataset2:
item["caption"] = get_vlm_output(item["path"], "Describe this image", "llava")
hypotheses = ["A cat", "Food"]
ranker_clip = CLIPRanker(args)
scores = ranker_clip.rerank_hypotheses(hypotheses, dataset1, dataset2)
print(scores)
ranker_vlm = VLMRanker(args)
scores = ranker_vlm.rerank_hypotheses(hypotheses, dataset1, dataset2)
print(scores)
ranker_llm = LLMRanker(args)
scores = ranker_llm.rerank_hypotheses(hypotheses, dataset1, dataset2)
print(scores)
if __name__ == "__main__":
test_rankers()