-
Notifications
You must be signed in to change notification settings - Fork 53
/
train_DRAEM.py
161 lines (127 loc) · 6.14 KB
/
train_DRAEM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import torch
from data_loader import MVTecDRAEMTrainDataset
from torch.utils.data import DataLoader
from torch import optim
from tensorboard_visualizer import TensorboardVisualizer
from model_unet import ReconstructiveSubNetwork, DiscriminativeSubNetwork
from loss import FocalLoss, SSIM
import os
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
def train_on_device(obj_names, args):
if not os.path.exists(args.checkpoint_path):
os.makedirs(args.checkpoint_path)
if not os.path.exists(args.log_path):
os.makedirs(args.log_path)
for obj_name in obj_names:
run_name = 'DRAEM_test_'+str(args.lr)+'_'+str(args.epochs)+'_bs'+str(args.bs)+"_"+obj_name+'_'
visualizer = TensorboardVisualizer(log_dir=os.path.join(args.log_path, run_name+"/"))
model = ReconstructiveSubNetwork(in_channels=3, out_channels=3)
model.cuda()
model.apply(weights_init)
model_seg = DiscriminativeSubNetwork(in_channels=6, out_channels=2)
model_seg.cuda()
model_seg.apply(weights_init)
optimizer = torch.optim.Adam([
{"params": model.parameters(), "lr": args.lr},
{"params": model_seg.parameters(), "lr": args.lr}])
scheduler = optim.lr_scheduler.MultiStepLR(optimizer,[args.epochs*0.8,args.epochs*0.9],gamma=0.2, last_epoch=-1)
loss_l2 = torch.nn.modules.loss.MSELoss()
loss_ssim = SSIM()
loss_focal = FocalLoss()
dataset = MVTecDRAEMTrainDataset(args.data_path + obj_name + "/train/good/", args.anomaly_source_path, resize_shape=[256, 256])
dataloader = DataLoader(dataset, batch_size=args.bs,
shuffle=True, num_workers=16)
n_iter = 0
for epoch in range(args.epochs):
print("Epoch: "+str(epoch))
for i_batch, sample_batched in enumerate(dataloader):
gray_batch = sample_batched["image"].cuda()
aug_gray_batch = sample_batched["augmented_image"].cuda()
anomaly_mask = sample_batched["anomaly_mask"].cuda()
gray_rec = model(aug_gray_batch)
joined_in = torch.cat((gray_rec, aug_gray_batch), dim=1)
out_mask = model_seg(joined_in)
out_mask_sm = torch.softmax(out_mask, dim=1)
l2_loss = loss_l2(gray_rec,gray_batch)
ssim_loss = loss_ssim(gray_rec, gray_batch)
segment_loss = loss_focal(out_mask_sm, anomaly_mask)
loss = l2_loss + ssim_loss + segment_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
if args.visualize and n_iter % 200 == 0:
visualizer.plot_loss(l2_loss, n_iter, loss_name='l2_loss')
visualizer.plot_loss(ssim_loss, n_iter, loss_name='ssim_loss')
visualizer.plot_loss(segment_loss, n_iter, loss_name='segment_loss')
if args.visualize and n_iter % 400 == 0:
t_mask = out_mask_sm[:, 1:, :, :]
visualizer.visualize_image_batch(aug_gray_batch, n_iter, image_name='batch_augmented')
visualizer.visualize_image_batch(gray_batch, n_iter, image_name='batch_recon_target')
visualizer.visualize_image_batch(gray_rec, n_iter, image_name='batch_recon_out')
visualizer.visualize_image_batch(anomaly_mask, n_iter, image_name='mask_target')
visualizer.visualize_image_batch(t_mask, n_iter, image_name='mask_out')
n_iter +=1
scheduler.step()
torch.save(model.state_dict(), os.path.join(args.checkpoint_path, run_name+".pckl"))
torch.save(model_seg.state_dict(), os.path.join(args.checkpoint_path, run_name+"_seg.pckl"))
if __name__=="__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--obj_id', action='store', type=int, required=True)
parser.add_argument('--bs', action='store', type=int, required=True)
parser.add_argument('--lr', action='store', type=float, required=True)
parser.add_argument('--epochs', action='store', type=int, required=True)
parser.add_argument('--gpu_id', action='store', type=int, default=0, required=False)
parser.add_argument('--data_path', action='store', type=str, required=True)
parser.add_argument('--anomaly_source_path', action='store', type=str, required=True)
parser.add_argument('--checkpoint_path', action='store', type=str, required=True)
parser.add_argument('--log_path', action='store', type=str, required=True)
parser.add_argument('--visualize', action='store_true')
args = parser.parse_args()
obj_batch = [['capsule'],
['bottle'],
['carpet'],
['leather'],
['pill'],
['transistor'],
['tile'],
['cable'],
['zipper'],
['toothbrush'],
['metal_nut'],
['hazelnut'],
['screw'],
['grid'],
['wood']
]
if int(args.obj_id) == -1:
obj_list = ['capsule',
'bottle',
'carpet',
'leather',
'pill',
'transistor',
'tile',
'cable',
'zipper',
'toothbrush',
'metal_nut',
'hazelnut',
'screw',
'grid',
'wood'
]
picked_classes = obj_list
else:
picked_classes = obj_batch[int(args.obj_id)]
with torch.cuda.device(args.gpu_id):
train_on_device(picked_classes, args)