-
Notifications
You must be signed in to change notification settings - Fork 7
/
train.py
175 lines (134 loc) · 7.14 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import sys
import json
import argparse
import time
import math
import random
import numpy as np
import torch
from torch import nn, optim
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch.multiprocessing as mp
import utils
from dataset import DatasetConstructor
import model
class Trainer():
def __init__(self, hparams):
self.hparams = hparams
self.init_random_seeds(hparams.seed)
self.epoch = -1
self.global_step = 0
def init_random_seeds(self, seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
def train_one_epoch(self, rank, epoch, hparams, generator, optimizer_g, scheduler_g, data_loader, logger, writer):
data_loader.sampler.set_epoch(epoch)
for batch_idx, (mels, real_audio) in enumerate(data_loader):
generator.train()
start_t = time.perf_counter()
mels = mels.cuda(rank, non_blocking=True)
real_audio = real_audio.cuda(rank, non_blocking=True)
noise = torch.randn(real_audio.shape).cuda(rank, non_blocking=True) * hparams.noise_scale
predicted_score, target_score = generator(mels, real_audio, noise)
optimizer_g.zero_grad()
loss_score = torch.square(predicted_score - target_score).mean([1, 2]).mean()
loss_g = loss_score
loss_g.backward()
optimizer_g.step()
compute_time = time.perf_counter() - start_t
if rank == 0:
logger.info(f'Train Epoch: {epoch} [{batch_idx * self.hparams.batch_size}/{len(data_loader.dataset)} ({100. * batch_idx / len(data_loader):.0f}%)]\tLoss: {loss_g.item():.6f} time: {compute_time:.3f}s steps: {self.global_step}')
self.global_step += 1
if rank == 0 and epoch % hparams.writer_interval == 0:
generator.eval()
predicted_rk45_audio, _ = generator.inference(mels[:1], sampling_method='rk45')
predicted_euler_1000_steps_audio, _ = generator.inference(mels[:1], sampling_steps=1000)
predicted_euler_100_steps_audio, _ = generator.inference(mels[:1], sampling_steps=100)
predicted_euler_10_steps_audio, _ = generator.inference(mels[:1], sampling_steps=10)
generator.train()
scalar_dict = {"loss/g/total": loss_g, "learning_rate": scheduler_g.get_last_lr()[0]}
utils.summarize(
writer=writer,
global_step=self.global_step,
audio={"p_rk45_audio": predicted_rk45_audio.cpu().numpy(),
"p_euler_1000_audio": predicted_euler_1000_steps_audio.cpu().numpy(),
"p_euler_100_audio": predicted_euler_100_steps_audio.cpu().numpy(),
"p_euler_10_audio": predicted_euler_10_steps_audio.cpu().numpy(),
"gt_audio": real_audio[0].cpu().numpy()
},
scalars=scalar_dict,
hparams=hparams)
scheduler_g.step()
if rank == 0:
logger.info('====> Epoch: {}'.format(epoch))
def evaluate_one_epoch(self, rank, epoch, hparams, generator, data_loader, logger, writer):
generator.eval()
loss_score = 0.0
losses_tot = []
with torch.no_grad():
for batch_idx, (mels, real_audio) in enumerate(data_loader):
mels = mels.cuda(rank, non_blocking=True)
real_audio = real_audio.cuda(rank, non_blocking=True)
noise = torch.randn(real_audio.shape).cuda(rank, non_blocking=True) * hparams.noise_scale
predicted_score, target_score = generator(mels, real_audio, noise)
loss_score = torch.square(predicted_score - target_score).mean([1, 2]).mean()
loss_gs = [loss_score]
if batch_idx == 0:
losses_tot = loss_gs
else:
losses_tot = [x + y for (x, y) in zip(losses_tot, loss_gs)]
if rank == 0:
logger.info(f'Train Epoch: {epoch} [{batch_idx * self.hparams.batch_size}/{len(data_loader.dataset)} ({100. * batch_idx / len(data_loader):.0f}%)]\tLoss: {loss_score.item():.6f}')
losses_tot = [x/len(data_loader) for x in losses_tot]
loss_tot = sum(losses_tot)
scalar_dict = {"loss/g/total": loss_tot}
utils.summarize(
writer=writer,
global_step=self.global_step,
scalars=scalar_dict)
logger.info('====> Epoch: {}'.format(epoch))
def train(self, rank, hparams):
if rank == 0:
logger = utils.get_logger(hparams.model_dir)
logger.info(hparams)
writer = SummaryWriter(log_dir=os.path.join(hparams.model_dir, "train"))
writer_eval = SummaryWriter(log_dir=os.path.join(hparams.model_dir, "eval"))
torch.cuda.set_device(rank)
dataset_constructor = DatasetConstructor(hparams, num_replicas=hparams.num_gpus, rank=rank)
train_loader = dataset_constructor.get_train_loader()
if rank == 0:
valid_loader = dataset_constructor.get_valid_loader()
generator = model.Generator(hparams).cuda(rank)
g_parameters = list(generator.parameters())
g_optimizer = optim.AdamW(g_parameters, lr=hparams.g_learning_rate, betas=(hparams.betas[0], hparams.betas[1]))
checkpoint_path = utils.latest_checkpoint_path(hparams.model_dir, "M_*.pth")
if os.path.isfile(checkpoint_path):
self.epoch, self.global_step = utils.load_checkpoint(checkpoint_path, generator, g_optimizer)
g_scheduler = torch.optim.lr_scheduler.ExponentialLR(g_optimizer, gamma=hparams.lr_decay, last_epoch=self.epoch)
for epoch in range(self.epoch + 1, hparams.epochs):
if rank==0:
self.train_one_epoch(rank, epoch, hparams, generator, g_optimizer, g_scheduler, train_loader, logger, writer)
self.evaluate_one_epoch(rank, epoch, hparams, generator, valid_loader, logger, writer_eval)
if epoch % hparams.checkpoint_interval == 0:
utils.save_checkpoint(generator, g_optimizer, g_scheduler.get_lr(), epoch, self.global_step, os.path.join(hparams.model_dir, "M_{}.pth".format(epoch)))
else:
self.train_one_epoch(rank, epoch, hparams, generator, g_optimizer, g_scheduler, train_loader, None, None)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=str, help='Json file for configuration')
parser.add_argument('-l', '--logdir', type=str, required=True)
parser.add_argument('-m', '--model', type=str, required=True, help='Model name')
args = parser.parse_args()
hparams = utils.train_setup(args.config, args.logdir, args.model)
trainer = Trainer(hparams)
if hparams.num_gpus > 1:
mp.spawn(trainer.train, nprocs=hparams.num_gpus, args=(hparams, ))
else:
trainer.train(0, hparams)
if __name__ == "__main__":
main()