forked from plumprc/RTSF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run.py
118 lines (99 loc) · 5.59 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import torch
import numpy as np
import random
from exp.exp_main import Exp_Main
import argparse
import time
fix_seed = 1024
random.seed(fix_seed)
torch.manual_seed(fix_seed)
np.random.seed(fix_seed)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Multivariate Time Series Forecasting')
# basic config
parser.add_argument('--is_training', type=int, required=True, default=1, help='status')
parser.add_argument('--model', type=str, required=True, default='Affine',
help='model name, options: [Affine, Linear, STD, TimeFlow]')
# data loader
parser.add_argument('--data', type=str, required=True, default='ETTh1', help='dataset type')
parser.add_argument('--root_path', type=str, default='./dataset/', help='root path of the data file')
parser.add_argument('--data_path', type=str, default='ETTh1.csv', help='data file')
parser.add_argument('--features', type=str, default='M',
help='forecasting task, options:[M, S]; M:multivariate predict multivariate, S:univariate predict univariate')
parser.add_argument('--target', type=str, default='OT', help='target feature in S or MS task')
parser.add_argument('--freq', type=str, default='h',
help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h')
parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location of model checkpoints')
# forecasting task
parser.add_argument('--seq_len', type=int, default=96, help='input sequence length')
parser.add_argument('--pred_len', type=int, default=96, help='prediction sequence length')
parser.add_argument('--individual', action='store_true', default=False, help='DLinear: a linear layer for each variate(channel) individually')
parser.add_argument('--seg', type=int, default=20, help='prediction plot segments')
# model
parser.add_argument('--channel', type=int, default=7, help='num of channel')
parser.add_argument('--d_model', type=int, default=512, help='dimension of model')
parser.add_argument('--layers', type=int, default=2, help='num of layers')
parser.add_argument('--embed', type=str, default='timeF', help='time features encoding, options:[timeF, fixed, learned]')
parser.add_argument('--do_predict', action='store_true', help='whether to predict unseen future data')
parser.add_argument('--rev', action='store_true', help='whether to apply RevIN')
parser.add_argument('--drop', type=float, default=0.1, help='dropout ratio')
# optimization
parser.add_argument('--num_workers', type=int, default=10, help='data loader num workers')
parser.add_argument('--itr', type=int, default=1, help='experiments times')
parser.add_argument('--train_epochs', type=int, default=15, help='train epochs')
parser.add_argument('--batch_size', type=int, default=16, help='batch size of train input data')
parser.add_argument('--patience', type=int, default=10, help='early stopping patience')
parser.add_argument('--learning_rate', type=float, default=0.001, help='optimizer learning rate')
parser.add_argument('--lradj', type=str, default='type1', help='adjust learning rate')
parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training', default=False)
# GPU
parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu')
parser.add_argument('--gpu', type=int, default=0, help='gpu')
parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default=False)
parser.add_argument('--devices', type=str, default='0,1,2,3', help='device ids of multile gpus')
args = parser.parse_args()
args.use_gpu = True if torch.cuda.is_available() and args.use_gpu else False
if args.use_gpu and args.use_multi_gpu:
args.dvices = args.devices.replace(' ', '')
device_ids = args.devices.split(',')
args.device_ids = [int(id_) for id_ in device_ids]
args.gpu = args.device_ids[0]
print('Args in experiment:')
print(args)
Exp = Exp_Main
if args.is_training:
for ii in range(args.itr):
# setting record of experiments
setting = '{}_{}_ft{}_sl{}_pl{}_dm{}_eb{}_{}'.format(
args.model,
args.data_path[:-4],
args.features,
args.seq_len,
args.pred_len,
args.d_model,
args.embed, ii)
exp = Exp(args) # set experiments
print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
exp.train(setting)
time_now = time.time()
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
exp.test(setting)
print('Inference time: ', time.time() - time_now)
if args.do_predict:
print('>>>>>>>predicting : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
exp.predict(setting, True)
torch.cuda.empty_cache()
else:
ii = 0
setting = '{}_{}_ft{}_sl{}_pl{}_dm{}_eb{}_{}'.format(args.model_id,
args.model,
args.data_path[:-4],
args.features,
args.seq_len,
args.pred_len,
args.d_model,
args.embed, ii)
exp = Exp(args) # set experiments
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
exp.test(setting, test=1)
torch.cuda.empty_cache()