-
Notifications
You must be signed in to change notification settings - Fork 28
/
FCN_da.py
102 lines (68 loc) · 3.59 KB
/
FCN_da.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
from keras.models import Model
from keras.layers import Conv2D,Input,Activation,MaxPooling2D,Dropout
from keras.layers import Cropping2D,Conv2DTranspose,Lambda
from keras.layers.merge import add
def create_vgg16_FCN(nb_rows, nb_cols,class_num):
input_node = Input(shape=(3, nb_rows, nb_cols))
# shape = (3, nb_rows, nb_cols)
cnv1 = Conv2D(filters=64, kernel_size=(3, 3), padding='same')(input_node)
cnv1 = Activation('relu')(cnv1)
cnv2 = Conv2D(filters=64, kernel_size=(3, 3), padding='same')(cnv1)
cnv2 = Activation('relu')(cnv2)
pool1 = MaxPooling2D((2, 2))(cnv2)
# shape = (64, nb_rows/2, nb_cols/2)
cnv3 = Conv2D(filters=128, kernel_size=(3, 3),padding='same')(pool1)
cnv3 = Activation('relu')(cnv3)
cnv4 = Conv2D(filters=128, kernel_size=(3, 3), padding='same')(cnv3)
cnv4 = Activation('relu')(cnv4)
pool2 = MaxPooling2D((2, 2))(cnv4)
# shape = (128, nb_rows/4, nb_cols/4)
cnv5 = Conv2D(filters=256, kernel_size=(3, 3), padding='same')(pool2)
cnv5 = Activation('relu')(cnv5)
cnv6 = Conv2D(filters=256, kernel_size=(3, 3), padding='same')(cnv5)
cnv6 = Activation('relu')(cnv6)
cnv7 = Conv2D(filters=256, kernel_size=(3, 3), padding='same')(cnv6)
cnv7 = Activation('relu')(cnv7)
pool3 = MaxPooling2D((2, 2),name='pool3_avg')(cnv7)
# shape = (256, nb_rows/8, nb_cols/8)
cnv8 = Conv2D(filters=512, kernel_size=(3, 3), padding='same')(pool3)
cnv8 = Activation('relu')(cnv8)
cnv9 = Conv2D(filters=512, kernel_size=(3, 3), padding='same')(cnv8)
cnv9= Activation('relu')(cnv9)
cnv10 = Conv2D(filters=512, kernel_size=(3, 3), padding='same')(cnv9)
cnv10 = Activation('relu')(cnv10)
pool4 = MaxPooling2D((2, 2),name='pool4_avg')(cnv10)
# shape = (512, nb_rows/16, nb_cols/16)
cnv11 = Conv2D(filters=512, kernel_size=(3, 3), padding='same')(pool4)
cnv11 = Activation('relu')(cnv11)
cnv12 = Conv2D(filters=512, kernel_size=(3, 3), padding='same')(cnv11)
cnv12 = Activation('relu')(cnv12)
cnv13 = Conv2D(filters=512, kernel_size=(3, 3), padding='same')(cnv12)
cnv13 = Activation('relu')(cnv13)
pool5 = MaxPooling2D((2, 2),name='pool5_avg')(cnv13)
# shape = (512, nb_rows/32, nb_cols/32)
cnv14 = Conv2D(filters=4096, kernel_size=(7, 7), padding='same')(pool5)
cnv14 = Activation('relu')(cnv14)
cnv14 = Dropout(0.5)(cnv14)
cnv15 = Conv2D(filters=4096, kernel_size=(1, 1), padding='same')(cnv14)
cnv15 = Activation('relu')(cnv15)
cnv15 = Dropout(0.5)(cnv15)
# Encoder is built
dcnv1 = Conv2D(filters=class_num, kernel_size=(1, 1), padding='same')(cnv15)
unpool1 = Conv2DTranspose(filters=class_num, kernel_size=(3, 3),strides=(2,2), padding='same')(dcnv1)
dcnv3 = Conv2D(filters=class_num, kernel_size=(1, 1), padding='same')(pool4)
merge1=add([unpool1,dcnv3])
dcnv4 = Conv2DTranspose(filters=class_num, kernel_size=(4, 4),strides=(2,2))(merge1)
dcnv4 = Cropping2D(cropping=(1,1))(dcnv4)#crop theano ConvT output shape
dcnv5=Conv2D(filters=class_num, kernel_size=(4, 4), padding='same')(pool3)
merge2=add([dcnv4,dcnv5])
dcnv6 = Conv2DTranspose(filters=class_num, kernel_size=(8, 8),strides=(8,8))(merge2)
# dcnv6 = Cropping2D(cropping=(1,1))(dcnv6)#crop theano ConvT output shape
output=Conv2D(filters=class_num, kernel_size=(4, 4), padding='same')(dcnv6)
out=Lambda(lambda x:x+0., name='output')(output)
out_2=Lambda(lambda x:x+0., name='output_2')(output)
model = Model(inputs=input_node, outputs=[out,out_2])
return model
#