-
Notifications
You must be signed in to change notification settings - Fork 69
/
test_IMDN_AS.py
133 lines (108 loc) · 4.47 KB
/
test_IMDN_AS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import argparse
import torch
import os
import numpy as np
import utils
import skimage.color as sc
import cv2
from model import architecture
parser = argparse.ArgumentParser(description='IMDN_AS')
parser.add_argument("--test_hr_folder", type=str, default='Test_Datasets/RealSR/ValidationGT',
help='the folder of the target images')
parser.add_argument("--test_lr_folder", type=str, default='Test_Datasets/RealSR/ValidationLR/',
help='the folder of the input images')
parser.add_argument("--output_folder", type=str, default='results/RealSR')
parser.add_argument("--checkpoint", type=str, default='checkpoints/IMDN_AS.pth',
help='checkpoint folder to use')
parser.add_argument('--cuda', action='store_true', default=True,
help='use cuda')
parser.add_argument("--is_y", action='store_true', default=False,
help='evaluate on y channel, if False evaluate on RGB channels')
opt = parser.parse_args()
print(opt)
cuda = opt.cuda
device = torch.device('cuda' if cuda else 'cpu')
def crop_forward(x, model, shave=32):
b, c, h, w = x.size()
h_half, w_half = h // 2, w // 2
h_size, w_size = h_half + shave - (h_half + shave) % 4, w_half + shave - (w_half + shave) % 4
inputlist = [
x[:, :, 0:h_size, 0:w_size],
x[:, :, 0:h_size, (w - w_size):w],
x[:, :, (h - h_size):h, 0:w_size],
x[:, :, (h - h_size):h, (w - w_size):w]]
outputlist = []
with torch.no_grad():
input_batch = torch.cat(inputlist, dim=0)
output_batch = model(input_batch)
outputlist.extend(output_batch.chunk(4, dim=0))
output = torch.zeros_like(x)
output[:, :, 0:h_half, 0:w_half] \
= outputlist[0][:, :, 0:h_half, 0:w_half]
output[:, :, 0:h_half, w_half:w] \
= outputlist[1][:, :, 0:h_half, (w_size - w + w_half):w_size]
output[:, :, h_half:h, 0:w_half] \
= outputlist[2][:, :, (h_size - h + h_half):h_size, 0:w_half]
output[:, :, h_half:h, w_half:w] \
= outputlist[3][:, :, (h_size - h + h_half):h_size, (w_size - w + w_half):w_size]
return output
filepath = opt.test_hr_folder
if filepath.split('/')[-2] == 'Set5' or filepath.split('/')[-2] == 'Set14':
ext = '.bmp'
else:
ext = '.png'
filelist = utils.get_list(filepath, ext=ext)
psnr_list = np.zeros(len(filelist))
ssim_list = np.zeros(len(filelist))
time_list = np.zeros(len(filelist))
model = architecture.IMDN_AS()
model_dict = utils.load_state_dict(opt.checkpoint)
model.load_state_dict(model_dict, strict=True)
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
i = 0
for imname in filelist:
im_gt = cv2.imread(imname)[:, :, [2, 1, 0]]
im_l = cv2.imread(opt.test_lr_folder + imname.split('/')[-1])[:, :, [2, 1, 0]]
if len(im_gt.shape) < 3:
im_gt = im_gt[..., np.newaxis]
im_gt = np.concatenate([im_gt] * 3, 2)
im_l = im_l[..., np.newaxis]
im_l = np.concatenate([im_l] * 3, 2)
im_input = im_l / 255.0
im_input = np.transpose(im_input, (2, 0, 1))
im_input = im_input[np.newaxis, ...]
im_input = torch.from_numpy(im_input).float()
if cuda:
model = model.to(device)
im_input = im_input.to(device)
_, _, h, w = im_input.size()
with torch.no_grad():
if h % 4 == 0 and w % 4 == 0:
start.record()
out = model(im_input)
end.record()
torch.cuda.synchronize()
time_list[i] = start.elapsed_time(end) # milliseconds
else:
start.record()
out = crop_forward(im_input, model)
end.record()
torch.cuda.synchronize()
time_list[i] = start.elapsed_time(end) # milliseconds
sr_img = utils.tensor2np(out.detach()[0])
if opt.is_y is True:
im_label = utils.quantize(sc.rgb2ycbcr(im_gt)[:, :, 0])
im_pre = utils.quantize(sc.rgb2ycbcr(sr_img)[:, :, 0])
else:
im_label = im_gt
im_pre = sr_img
psnr_list[i] = utils.compute_psnr(im_pre, im_label)
ssim_list[i] = utils.compute_ssim(im_pre, im_label)
output_folder = os.path.join(opt.output_folder,
imname.split('/')[-1])
if not os.path.exists(opt.output_folder):
os.makedirs(opt.output_folder)
cv2.imwrite(output_folder, sr_img[:, :, [2, 1, 0]])
i += 1
print("Mean PSNR: {}, SSIM: {}, Time: {} ms".format(np.mean(psnr_list), np.mean(ssim_list), np.mean(time_list)))