Skip to content

Latest commit

 

History

History
executable file
·
104 lines (78 loc) · 3.98 KB

README.md

File metadata and controls

executable file
·
104 lines (78 loc) · 3.98 KB

MASKER: Masked Keyword Regularization for Reliable Text Classification

Official PyTorch implementation of "MASKER: Masked Keyword Regularization for Reliable Text Classification" (AAAI 2021) by Seung Jun Moon*, Sangwoo Mo*, Kimin Lee, Jaeho Lee, and Jinwoo Shin.

Setup

Download datasets

Download datasets from Google Drive and locate files in ./dataset.

Set DATA_PATH (default: ./dataset) and CKPT_PATH (default: ./checkpoint) from common.py. Datafiles should be located in the corresponding directory DATA_PATH/{data_name}. For example, IMDB datafiles should be located in DATA_PATH/imdb/imdb.txt.

The dataset will be pre-processed into a TensorDataset and be saved in

DATA_PATH/{data_name}/{base_path}.pth

where base_path = "{data_name}_{model_name}_{suffix}" and suffix indicates split ratio, random seed, train/test, etc.

Generate keywords

One needs pre-computed keywords to train residual ensemble or MASKER.

When running such models, the keywords will be automatically saved in

DATA_PATH/{data_name}/{base_path}_keyword_{keyword_type}_{keyword_per_class}.pth

and the biased/masked dataset will be saved in

DATA_PATH/{data_name}/{base_path}_{biased/masked}_{keyword_type}_{keyword_per_class}.pth

Train models

Train vanilla BERT

Train a vanilla BERT model. The model will be saved in review_bert-base-uncased_sub_0.25_seed_0.model.
One need to train vanilla BERT first to get attention keywords for residual ensemble and MASKER models.

python train.py --dataset review --split_ratio 0.25 --seed 0 \
    --train_type base \
    --backbone bert --classifier_type softmax --optimizer adam_ood \

Train residual ensemble

Train a keyword biased model. Need to specify the attn_model_path for attention keywords.

python train.py --dataset review --split_ratio 0.25 --seed 0 \
    --train_type base --use_biased_dataset \
    --backbone bert --classifier_type softmax --optimizer adam_ood \
    --attn_model_path review_bert-base-uncased_sub_0.25_seed_0.model

Train a residual ensemble [1,2] model. Need to specify the biased_model_path.

python train.py --dataset review --split_ratio 0.25 --seed 0 \
    --train_type residual \
    --backbone bert --classifier_type softmax --optimizer adam_ood \
    --biased_model_path review_bert-base-uncased_sub_0.25_seed_0_biased.model

[1] Clark et al. Don't Take the Easy Way Out: Ensemble Based Methods for Avoiding Known Dataset Biases. EMNLP 2019.
[2] He et al. Unlearn Dataset Bias in Natural Language Inference by Fitting the Residual. EMNLP Workshop 2019.

Train MASKER

Train a MASKER model. Need to specify the attn_model_path for attention keywords.

python train.py --dataset review --split_ratio 0.25 --seed 0 \
    --train_type masker \
    --backbone bert --classifier_type sigmoid --optimizer adam_ood \
    --keyword_type attention --lambda_ssl 0.001 --lambda_ent 0.0001 \
    --attn_model_path review_bert-base-uncased_sub_0.25_seed_0.model

Evalaute models

Evaluate classification

Specify test_dataset for domain generalization results (in-distribution if not specified).

python eval.py --dataset review --split_ratio 0.25 --seed 0 \
    --eval_type acc --test_dataset review \
    --backbone bert --classifier_type softmax \
    --model_path review_bert-base-uncased_sub_0.25_seed_0.model

Evaluate OOD detection

Specify ood_datasets for OOD detection results.

python eval.py --dataset review --split_ratio 0.25 --seed 0 \
    --eval_type ood --ood_datasets remain \
    --backbone bert --classifier_type softmax \
    --model_path review_bert-base-uncased_sub_0.25_seed_0.model