-
Notifications
You must be signed in to change notification settings - Fork 9
/
aht.c
846 lines (769 loc) · 24 KB
/
aht.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
/* An implementation of in-memory hash tables:
* Copyright (c) 2000-2002 Salvatore Sanfilippo <[email protected]>
*
* -- VERSION 2002.09.07 --
*
* COPYRIGHT AND PERMISSION NOTICE
* -------------------------------
*
* Copyright (c) 2000 Salvatore Sanfilippo <[email protected]>
* Copyright (c) 2001 Salvatore Sanfilippo <[email protected]>
* Copyright (c) 2002 Salvatore Sanfilippo <[email protected]>
*
* All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, and/or sell copies of the Software, and to permit persons
* to whom the Software is furnished to do so, provided that the above
* copyright notice(s) and this permission notice appear in all copies of
* the Software and that both the above copyright notice(s) and this
* permission notice appear in supporting documentation.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT
* OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
* HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
* INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
* FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
* NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
* WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* Except as contained in this notice, the name of a copyright holder
* shall not be used in advertising or otherwise to promote the sale, use
* or other dealings in this Software without prior written authorization
* of the copyright holder.
*
* OVERVIEW
* --------
*
* AHT is an implementation of a dictionary with support for
* INSERT, DELETE and SEARCH operations. It uses the hash table
* as base data structure to provide almost constant times for
* the three operations. AHT also automatically care about the
* size of the current key-values set increasing the hash table
* as needed.
*
* DESIGN PRINCIPLE
* ----------------
*
* - AHT try to resist to attacker-induced worst-case behaviour
* trought the randomization of the hash-function. This is
* optional.
*
* - AHT takes care of the hash table expansion when needed.
* The hash table load ranges from 0 to 0.5, the hash table
* size is a power of two.
*
* - A simple implementation. The collisions resolution used
* is a simple linear probing, that takes advantage of
* the modern CPU caches, the low hash table max load and
* the use of a strong hash function provided with this library
* (ht_strong_hash), should mitigate the primary clustering
* enough. Experimental results shown that double hashing
* was a performance lost with common key types in modern
* CPUs.
*
* - Moderatly method oriented, it is possible to define the hash
* function, key/value destructors, key compare function, for a
* given hash table, but not with a per-element base.
*
* - Specialized slab allocator for the hash table element structure,
* useful when there are a number of INSERT/DELETE operations.
* It is compiled off by default.
*
* === WARNING ===
* = Before to use this library, think about the -fact- that the
* = worst case is O(N). Like for the quick sort algorithm, it may
* = be a bad idea to use this library in medical software, or other
* = software for wich the worst case should be taken in account
* = even if not likely to happen.
* = Good alternatives are red-black trees, and other trees with
* = a good worst-case behavior.
* ===============
*
* HOW TO GET UP TO DATE CODE
* --------------------------
*
* http://antirez.sed-consortium.com/software/aht.html
*
* TODO
* ----
*
* - Write the documentation
* - ht_copy() to copy an element between hash tables
* - ht_dup() to duplicate an entire hash table
* - ht_merge() to add the content of one hash table to another
* - disk operations, the ability to save an hashtable from the
* memory to the disk and the reverse operation.
*
* Most of this features needs additional methods, like one
* to copy an object, and should return an error if such methods
* are not defined.
*
*/
#include <sys/types.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include "aht.h"
/* -------------------------- private prototypes ---------------------------- */
static int ht_expand_if_needed(struct hashtable *t);
static unsigned int next_power(unsigned int size);
static int ht_insert(struct hashtable *t, void *key, unsigned int *avail_index);
#ifdef AHT_USE_SLAB
static void slab_init(struct ht_cache *c);
static void slab_destroy(struct ht_cache *c);
static void *slab_get_obj(struct ht_cache *c);
static void slab_free_obj(struct ht_cache *c, void *ptr);
#endif /* AHT_USE_SLAB */
/* The special ht_free_element pointer is used to mark
* a freed element in the hash table (note that the elements
* neven used are just NULL pointers) */
static struct ht_ele *ht_free_element = (void*) -1;
/* -------------------------- hash functions -------------------------------- */
/* The djb hash function, that's under public domain */
u_int32_t djb_hash(unsigned char *buf, size_t len)
{
u_int32_t h = 5381;
while(len--)
h = (h + (h << 5)) ^ *buf++;
return h;
}
u_int32_t djb_hashR(unsigned char *buf, size_t len)
{
u_int32_t h = 5381;
buf += len-1;
while(len--)
h = (h + (h << 5)) ^ *buf--;
return h;
}
/* Another trivial hash function */
#define ROT32R(x,n) (((x)>>n)|(x<<(32-n)))
u_int32_t trivial_hash(unsigned char *buf, size_t len)
{
u_int32_t h = 0;
while(len--) {
h = h + *buf++;
h = ROT32R(h, 3);
}
return h;
}
u_int32_t trivial_hashR(unsigned char *buf, size_t len)
{
u_int32_t h = 0;
buf += len-1;
while(len--) {
h = h + *buf--;
h = ROT32R(h, 3);
}
return h;
}
/* A strong hash function that should be the default with this
* hashtable implementation. Our hash tables does not support
* double hashing for design: the idea is to avoid double
* hashing and use a bit slower but very strong hash function like
* this. This should provide quite good performances with
* all the kinds of keys if you take the default max load of 50%.
*
* For more information see: http://burtleburtle.net/bob/hash/evahash.html */
/* The mixing step */
#define mix(a,b,c) \
{ \
a=a-b; a=a-c; a=a^(c>>13); \
b=b-c; b=b-a; b=b^(a<<8); \
c=c-a; c=c-b; c=c^(b>>13); \
a=a-b; a=a-c; a=a^(c>>12); \
b=b-c; b=b-a; b=b^(a<<16); \
c=c-a; c=c-b; c=c^(b>>5); \
a=a-b; a=a-c; a=a^(c>>3); \
b=b-c; b=b-a; b=b^(a<<10); \
c=c-a; c=c-b; c=c^(b>>15); \
}
/* The whole new hash function */
u_int32_t __ht_strong_hash(u_int8_t *k, u_int32_t length, u_int32_t initval)
{
u_int32_t a,b,c; /* the internal state */
u_int32_t len; /* how many key bytes still need mixing */
/* Set up the internal state */
len = length;
a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */
c = initval; /* variable initialization of internal state */
/*---------------------------------------- handle most of the key */
while (len >= 12)
{
a=a+(k[0]+((u_int32_t)k[1]<<8)+((u_int32_t)k[2]<<16)+
((u_int32_t)k[3]<<24));
b=b+(k[4]+((u_int32_t)k[5]<<8)+((u_int32_t)k[6]<<16)+
((u_int32_t)k[7]<<24));
c=c+(k[8]+((u_int32_t)k[9]<<8)+((u_int32_t)k[10]<<16)+
((u_int32_t)k[11]<<24));
mix(a,b,c);
k = k+12; len = len-12;
}
/*------------------------------------- handle the last 11 bytes */
c = c+length;
switch(len) /* all the case statements fall through */
{
case 11: c=c+((u_int32_t)k[10]<<24);
case 10: c=c+((u_int32_t)k[9]<<16);
case 9 : c=c+((u_int32_t)k[8]<<8);
/* the first byte of c is reserved for the length */
case 8 : b=b+((u_int32_t)k[7]<<24);
case 7 : b=b+((u_int32_t)k[6]<<16);
case 6 : b=b+((u_int32_t)k[5]<<8);
case 5 : b=b+k[4];
case 4 : a=a+((u_int32_t)k[3]<<24);
case 3 : a=a+((u_int32_t)k[2]<<16);
case 2 : a=a+((u_int32_t)k[1]<<8);
case 1 : a=a+k[0];
/* case 0: nothing left to add */
}
mix(a,b,c);
/*-------------------------------------------- report the result */
return c;
}
/* ----------------------------- API implementation ------------------------- */
/* Initialize the hash table */
int ht_init(struct hashtable *t)
{
t->table = NULL;
t->size = 0;
t->sizemask = 0;
t->used = 0;
t->collisions = 0;
t->hashf = NULL;
t->key_destructor = ht_no_destructor;
t->val_destructor = ht_no_destructor;
t->key_compare = ht_compare_ptr;
#ifdef AHT_USE_SLAB
t->cache = malloc(sizeof(struct ht_cache));
if (!t->cache)
return HT_NOMEM;
slab_init(t->cache);
#endif
return HT_OK;
}
/* Resize the table to the minimal size that contains all the elements */
int ht_resize(struct hashtable *t)
{
int minimal = (t->used * 2)+1;
if (minimal < HT_INITIAL_SIZE)
minimal = HT_INITIAL_SIZE;
return ht_expand(t, minimal);
}
/* Move an element accross hash tables */
int ht_move(struct hashtable *orig, struct hashtable *dest, unsigned int index)
{
int ret;
unsigned int new_index;
/* If the element isn't in the table ht_search will store
* the index of the free ht_ele in the integer pointer by *index */
ret = ht_insert(dest, orig->table[index]->key, &new_index);
if (ret != HT_OK)
return ret;
/* Move the element */
dest->table[new_index] = orig->table[index];
orig->table[index] = ht_free_element;
orig->used--;
dest->used++;
return HT_OK;
}
/* Expand or create the hashtable */
int ht_expand(struct hashtable *t, size_t size)
{
struct hashtable n; /* the new hashtable */
unsigned int realsize = next_power(size), i;
/* the size is invalid if it is smaller than the number of
* elements already inside the hashtable */
if (t->used >= size)
return HT_INVALID;
ht_init(&n);
n.size = realsize;
n.sizemask = realsize-1;
n.table = malloc(realsize*sizeof(struct ht_ele*));
if (n.table == NULL)
return HT_NOMEM;
/* Copy methods */
n.hashf = t->hashf;
n.key_destructor = t->key_destructor;
n.val_destructor = t->val_destructor;
n.key_compare= t->key_compare;
#ifdef AHT_USE_SLAB
/* We need also to migrate the object cache to the new
* slab. We can just free the new and copy the old pointer */
free(n.cache);
n.cache = t->cache;
#endif /* AHT_USE_SLAB */
/* Initialize all the pointers to NULL */
memset(n.table, 0, realsize*sizeof(struct ht_ele*));
/* Copy all the elements from the old to the new table:
* note that if the old hash table is empty t->size is zero,
* so ht_expand() acts like an ht_create() */
n.used = t->used;
for (i = 0; i < t->size && t->used > 0; i++) {
if (t->table[i] != NULL && t->table[i] != ht_free_element) {
u_int32_t h;
/* Get the new element index: note that we
* know that there aren't freed elements in 'n' */
h = n.hashf(t->table[i]->key) & n.sizemask;
if (!n.table[h])
goto move;
n.collisions++;
while(1) {
h = (h+1) & n.sizemask;
if (!n.table[h])
break;
n.collisions++;
}
move: /* Move the element */
n.table[h] = t->table[i];
t->used--;
}
}
assert(t->used == 0);
free(t->table);
/* Remap the new hashtable in the old */
*t = n;
return HT_OK;
}
/* Add an element, discarding the old if the key already exists */
int ht_replace(struct hashtable *t, void *key, void *data)
{
int ret;
unsigned int index;
/* Try to add the element */
ret = ht_add(t, key, data);
if (ret == HT_OK || ret != HT_BUSY)
return ret;
/* It already exists, get the index */
ret = ht_search(t, key, &index);
assert(ret == HT_FOUND);
/* Remove the old */
ret = ht_free(t, index);
assert(ret == HT_OK);
/* And add the new */
return ht_add(t, key, data);
}
/* Add an element to the target hash table */
int ht_add(struct hashtable *t, void *key, void *data)
{
int ret;
unsigned int index;
/* If the element isn't in the table ht_insert() will store
* the index of the free ht_ele in the integer pointer by *index */
ret = ht_insert(t, key, &index);
if (ret != HT_OK)
return ret;
/* Allocates the memory and stores key */
#ifdef AHT_USE_SLAB
if ((t->table[index] = slab_get_obj(t->cache)) == NULL)
#else
if ((t->table[index] = malloc(sizeof(struct ht_ele))) == NULL)
#endif /* AHT_USE_SLAB */
return HT_NOMEM;
/* Store the pointers */
t->table[index]->key = key;
t->table[index]->data = data;
t->used++;
return HT_OK;
}
/* search and remove an element */
int ht_rm(struct hashtable *t, void *key)
{
int ret;
unsigned int index;
if ((ret = ht_search(t, key, &index)) != HT_FOUND)
return ret;
return ht_free(t, index);
}
/* Destroy an entire hash table */
int ht_destroy(struct hashtable *t)
{
unsigned int i;
struct hashtable copy = *t;
/* Free all the elements */
for (i = 0; i < t->size && t->used > 0; i++) {
if (t->table[i] != NULL && t->table[i] != ht_free_element) {
if (t->key_destructor)
t->key_destructor(t->table[i]->key);
if (t->val_destructor)
t->val_destructor(t->table[i]->data);
#ifndef AHT_USE_SLAB
free(t->table[i]);
#endif
t->used--;
}
}
#ifdef AHT_USE_SLAB
slab_destroy(t->cache);
#endif
/* Free the table and the allocated cache structure */
free(t->table);
#ifdef AHT_USE_SLAB
free(t->cache);
#endif
/* Re-initialize the table */
ht_init(t);
/* Restore methods */
t->hashf = copy.hashf;
t->key_destructor = copy.key_destructor;
t->val_destructor = copy.val_destructor;
t->key_compare = copy.key_compare;
return HT_OK; /* It can't fail ht_destroy never fails */
}
/* Free an element in the hash table */
int ht_free(struct hashtable *t, unsigned int index)
{
if (index >= t->size)
return HT_IOVERFLOW; /* Index overflow */
/* ht_free() calls against non-existent elements are ignored */
if (t->table[index] != NULL && t->table[index] != ht_free_element) {
/* release the key */
if (t->key_destructor)
t->key_destructor(t->table[index]->key);
/* release the value */
if (t->val_destructor)
t->val_destructor(t->table[index]->data);
/* free the element structure */
#ifdef AHT_USE_SLAB
slab_free_obj(t->cache, t->table[index]);
#else
free(t->table[index]);
#endif /* AHT_USE_SLAB */
/* mark the element as freed */
t->table[index] = ht_free_element;
t->used--;
}
return HT_OK;
}
/* Search the element with the given key */
int ht_search(struct hashtable *t, void *key, unsigned int *found_index)
{
int ret;
u_int32_t h;
/* Expand the hashtable if needed */
if (t->size == 0) {
if ((ret = ht_expand_if_needed(t)) != HT_OK)
return ret;
}
/* Try using the first hash functions */
h = t->hashf(key) & t->sizemask;
/* this handles the removed elements */
if (!t->table[h])
return HT_NOTFOUND;
if (t->table[h] != ht_free_element &&
t->key_compare(key, t->table[h]->key))
{
*found_index = h;
return HT_FOUND;
}
while(1) {
h = (h+1) & t->sizemask;
/* this handles the removed elements */
if (t->table[h] == ht_free_element)
continue;
if (!t->table[h])
return HT_NOTFOUND;
if (t->key_compare(key, t->table[h]->key)) {
*found_index = h;
return HT_FOUND;
}
}
}
/* This function is used to run the entire hash table,
* it returns:
* 1 if the element with the given index is valid
* 0 if the element with the given index is empty or marked free
* -1 if the element if out of the range */
int ht_get_byindex(struct hashtable *t, unsigned int index)
{
if (index >= t->size)
return -1;
if (t->table[index] == NULL || t->table[index] == ht_free_element)
return 0;
return 1;
}
/* ------------------------- private functions ------------------------------ */
/* Expand the hash table if needed */
static int ht_expand_if_needed(struct hashtable *t)
{
/* If the hash table is empty expand it to the intial size,
* if the table is half-full redobule its size. */
if (t->size == 0)
return ht_expand(t, HT_INITIAL_SIZE);
if (t->size <= (t->used << 1))
return ht_expand(t, t->size << 1);
return HT_OK;
}
/* Our hash table capability is a power of two */
static unsigned int next_power(unsigned int size)
{
unsigned int i = 256;
if (size >= 2147483648U)
return 2147483648U;
while(1) {
if (i >= size)
return i;
i *= 2;
}
}
/* the insert function to add elements out of ht expansion */
static int ht_insert(struct hashtable *t, void *key, unsigned int *avail_index)
{
int ret;
u_int32_t h;
/* Expand the hashtable if needed */
if ((ret = ht_expand_if_needed(t)) != HT_OK)
return ret;
/* Try using the first hash functions */
h = t->hashf(key) & t->sizemask;
/* this handles the removed elements */
if (!t->table[h] || t->table[h] == ht_free_element) {
*avail_index = h;
return HT_OK;
}
t->collisions++;
if (t->key_compare(key, t->table[h]->key))
return HT_BUSY;
while(1) {
h = (h+1) & t->sizemask;
/* this handles the removed elements */
if (!t->table[h] || t->table[h] == ht_free_element) {
*avail_index = h;
return HT_OK;
}
t->collisions++;
if (t->key_compare(key, t->table[h]->key))
return HT_BUSY;
}
}
/* ------------------------- provided destructors --------------------------- */
/* destructor for heap allocated keys/values */
void ht_destructor_free(void *obj)
{
free(obj);
}
/* ------------------------- provided comparators --------------------------- */
/* default key_compare method */
int ht_compare_ptr(void *key1, void *key2)
{
return (key1 == key2);
}
/* key compare for nul-terminated strings */
int ht_compare_string(void *key1, void *key2)
{
return (strcmp(key1, key2) == 0) ? 1 : 0;
}
/* -------------------- hash functions for common data types --------------- */
/* We make this global to allow hash function randomization,
* as security measure against attacker-induced worst case behaviuor.
*
* Note that being H_i the strong hash function with init value of i
* and H_i' the same hash function with init value of i' than:
*
* if H_i(StringOne) is equal to H_i(CollidingStringTwo)
*
* it is NOT true that
*
* H_i'(StringOne) is equal to H_i''(CollidingStringTwo)
*/
static u_int32_t strong_hash_init_val = 0xF937A21;
/* Set the secret initialization value. It should be set from
* a secure PRNG like /dev/urandom at program initialization time */
void ht_set_strong_hash_init_val(u_int32_t secret)
{
strong_hash_init_val = secret;
}
/* __ht_strong_hash wrapper that mix a user-provided initval
* with the global strong_hash_init_val. __ht_strong_hash is
* even exported directly. */
u_int32_t ht_strong_hash(u_int8_t *k, u_int32_t length, u_int32_t initval)
{
return __ht_strong_hash(k, length, initval^strong_hash_init_val);
}
/* Hash function suitable for C strings and other data types using
* a 0-byte as terminator */
u_int32_t ht_hash_string(void *key)
{
return __ht_strong_hash(key, strlen(key), strong_hash_init_val);
}
/* ------------------------------- memory ----------------------------------- */
#ifdef AHT_USE_SLAB
#define SLAB_OBJFULSZ ((SLAB_OBJSZ)+(SLAB_PTRSZ))
/* minimum number of free elements to consider the slab not full */
#define SLAB_NOTFUL_THRE 32
/* get the slab pointer stored in the tail of the object */
#define SLAB_BY_PTR(ptr, slab) do { \
void **p = (void**)((unsigned char*)ptr + SLAB_OBJSZ); \
slab = *p; \
} while(0);
/* store the slab ptr in the tail of the object */
#define SLAB_STORE_PTR(obj, slab) do { \
void **p = (void**)((unsigned char*)ptr + SLAB_OBJSZ); \
*p = slab; \
} while(0)
#if 0 /* this works with unaligned data */
/* get the slab pointer stored in the tail of the object */
#define SLAB_BY_PTR(ptr, slab) do { \
memcpy(&slab, ((unsigned char*)ptr)+SLAB_OBJSZ, sizeof(void*)); \
} while(0)
/* store the slab ptr in the tail of the object */
#define SLAB_STORE_PTR(ptr, slab) do { \
memcpy(((unsigned char*)ptr)+SLAB_OBJSZ, &slab, sizeof(void*)); \
} while(0)
#endif
u_int8_t slab_free_list_init[SLAB_ELE] = {
0xff, 0xfe, 0xfd, 0xfc, 0xfb, 0xfa, 0xf9, 0xf8,
0xf7, 0xf6, 0xf5, 0xf4, 0xf3, 0xf2, 0xf1, 0xf0,
0xef, 0xee, 0xed, 0xec, 0xeb, 0xea, 0xe9, 0xe8,
0xe7, 0xe6, 0xe5, 0xe4, 0xe3, 0xe2, 0xe1, 0xe0,
0xdf, 0xde, 0xdd, 0xdc, 0xdb, 0xda, 0xd9, 0xd8,
0xd7, 0xd6, 0xd5, 0xd4, 0xd3, 0xd2, 0xd1, 0xd0,
0xcf, 0xce, 0xcd, 0xcc, 0xcb, 0xca, 0xc9, 0xc8,
0xc7, 0xc6, 0xc5, 0xc4, 0xc3, 0xc2, 0xc1, 0xc0,
0xbf, 0xbe, 0xbd, 0xbc, 0xbb, 0xba, 0xb9, 0xb8,
0xb7, 0xb6, 0xb5, 0xb4, 0xb3, 0xb2, 0xb1, 0xb0,
0xaf, 0xae, 0xad, 0xac, 0xab, 0xaa, 0xa9, 0xa8,
0xa7, 0xa6, 0xa5, 0xa4, 0xa3, 0xa2, 0xa1, 0xa0,
0x9f, 0x9e, 0x9d, 0x9c, 0x9b, 0x9a, 0x99, 0x98,
0x97, 0x96, 0x95, 0x94, 0x93, 0x92, 0x91, 0x90,
0x8f, 0x8e, 0x8d, 0x8c, 0x8b, 0x8a, 0x89, 0x88,
0x87, 0x86, 0x85, 0x84, 0x83, 0x82, 0x81, 0x80,
0x7f, 0x7e, 0x7d, 0x7c, 0x7b, 0x7a, 0x79, 0x78,
0x77, 0x76, 0x75, 0x74, 0x73, 0x72, 0x71, 0x70,
0x6f, 0x6e, 0x6d, 0x6c, 0x6b, 0x6a, 0x69, 0x68,
0x67, 0x66, 0x65, 0x64, 0x63, 0x62, 0x61, 0x60,
0x5f, 0x5e, 0x5d, 0x5c, 0x5b, 0x5a, 0x59, 0x58,
0x57, 0x56, 0x55, 0x54, 0x53, 0x52, 0x51, 0x50,
0x4f, 0x4e, 0x4d, 0x4c, 0x4b, 0x4a, 0x49, 0x48,
0x47, 0x46, 0x45, 0x44, 0x43, 0x42, 0x41, 0x40,
0x3f, 0x3e, 0x3d, 0x3c, 0x3b, 0x3a, 0x39, 0x38,
0x37, 0x36, 0x35, 0x34, 0x33, 0x32, 0x31, 0x30,
0x2f, 0x2e, 0x2d, 0x2c, 0x2b, 0x2a, 0x29, 0x28,
0x27, 0x26, 0x25, 0x24, 0x23, 0x22, 0x21, 0x20,
0x1f, 0x1e, 0x1d, 0x1c, 0x1b, 0x1a, 0x19, 0x18,
0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10,
0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,
0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
};
static void slab_init(struct ht_cache *c)
{
c->head = NULL;
c->tail = NULL;
c->slabs = 0;
}
static void slab_destroy(struct ht_cache *c)
{
struct ht_slab *s = c->head, *t;
while(s) {
t = s->next;
free(s);
s = t;
}
}
static void *slab_get_obj(struct ht_cache *c)
{
struct ht_slab *slab = c->head;
void *ptr;
/* allocation */
if (!slab || !slab->free) {
slab = malloc(sizeof(struct ht_slab));
if (!slab)
return NULL;
/* link on head */
if (c->head)
c->head->prev = slab;
else
c->tail = slab;
slab->next = c->head;
slab->prev = NULL;
slab->free = SLAB_ELE;
memcpy(slab->freelist, slab_free_list_init, SLAB_ELE);
slab->parent = c;
c->head = slab;
c->slabs++;
}
/* get a free object */
slab->free--;
ptr = slab->mem + (SLAB_OBJFULSZ * slab->freelist[slab->free]);
/* if this slab is now full put it on the tail */
if (!slab->free && c->slabs > 1) {
/* unlink from head */
c->head = slab->next;
c->head->prev = NULL;
/* link on tail */
c->tail->next = slab;
slab->prev = c->tail;
slab->next = NULL;
c->tail = slab;
}
SLAB_STORE_PTR(ptr, slab);
return ptr;
}
static void slab_free_obj(struct ht_cache *c, void *ptr)
{
struct ht_slab *slab;
/* Obtain the slab pointer from the object */
SLAB_BY_PTR(ptr, slab);
/* Update the free list and the free count */
slab->freelist[slab->free] = (ptr - (void*)slab->mem) / SLAB_OBJFULSZ;
slab->free++;
/* move this slab to the head if it reached the waterlevel */
if (slab->free == SLAB_NOTFUL_THRE && c->slabs > 1) {
if (slab == c->head) return;
/* unlink from middle or tail, we are not the head
* so we can assume slab->prev != NULL */
slab->prev->next = slab->next;
if (slab->next) {
slab->next->prev = slab->prev;
} else {
c->tail = slab->prev;
}
/* put on the head */
slab->prev = NULL;
slab->next = c->head;
c->head->prev = slab;
c->head = slab;
return;
}
/* if this slab is empty:
* 1) if it's already the head, free it if the next is not full.
* 2) if the current head is full move it on the head
* else destroy it */
if (slab->free == SLAB_ELE && c->slabs > 1) {
if (slab == c->head) {
if (!slab->next->free)
return;
/* unlink from head and free */
c->head = slab->next;
c->head->prev = NULL;
c->slabs--;
free(slab);
return;
}
/* unlink the slab, we can assume slab->prev != NULL */
slab->prev->next = slab->next;
if (slab->next) {
slab->next->prev = slab->prev;
} else {
c->tail = slab->prev;
}
/* the current head is not full? free this slab */
if (c->head->free) {
c->slabs--;
free(slab);
return;
}
/* the current head is full, move this slab to the head */
slab->prev= NULL;
slab->next = c->head;
c->head->prev = slab;
c->head = slab;
return;
}
}
#endif /* AHT_USE_SLAB */