From fe3f3982debbd88e94f1909c313d1a611d2ff1c9 Mon Sep 17 00:00:00 2001 From: Jelmer Date: Fri, 25 Feb 2022 23:01:32 +0100 Subject: [PATCH] Embed quality-scores as HTML tag attributes (#358) Quality scores for HTML translation exposed as and tags in the HTML output. While this increases the size of the HTML returned, the resulting rendered HTML can easily be styled to show the scores. With Javascript or CSS, developers can easily have some interface based on these extra attributes. Also includes updates to the test page to show a proof-of-concept demonstration. Fixes: #355 --- src/tests/common-impl.cpp | 5 +- src/translator/definitions.h | 10 ++++ src/translator/html.cpp | 88 +++++++++++++++++++++++----- src/translator/html.h | 8 ++- src/translator/quality_estimator.cpp | 22 +------ src/translator/quality_estimator.h | 12 ---- src/translator/response.cpp | 18 ++++++ src/translator/response.h | 6 +- wasm/bindings/response_bindings.cpp | 12 ---- wasm/test_page/css/index.css | 21 ++++++- wasm/test_page/index.html | 2 +- wasm/test_page/js/index.js | 58 +++++++++++++++--- wasm/test_page/js/worker.js | 40 ------------- 13 files changed, 187 insertions(+), 115 deletions(-) diff --git a/src/tests/common-impl.cpp b/src/tests/common-impl.cpp index 43b1c07d2..431ddaa71 100644 --- a/src/tests/common-impl.cpp +++ b/src/tests/common-impl.cpp @@ -155,10 +155,11 @@ void TestSuite::qualityEstimatorWords(Ptr model) { std::string source = readFromStdin(); const Response response = bridge_.translate(service_, model, std::move(source), responseOptions); - for (const auto &sentenceQualityEstimate : response.qualityScores) { + for (size_t sentenceIdx = 0; sentenceIdx < response.qualityScores.size(); ++sentenceIdx) { + const auto &sentenceQualityEstimate = response.qualityScores[sentenceIdx]; std::cout << "[SentenceBegin]\n"; - for (const auto &wordByteRange : sentenceQualityEstimate.wordByteRanges) { + for (const auto &wordByteRange : getWordByteRanges(response, sentenceIdx)) { const string_view word(response.target.text.data() + wordByteRange.begin, wordByteRange.size()); std::cout << word << "\n"; } diff --git a/src/translator/definitions.h b/src/translator/definitions.h index eb1e67296..b3bc1019b 100644 --- a/src/translator/definitions.h +++ b/src/translator/definitions.h @@ -42,6 +42,16 @@ struct ByteRange { bool operator==(ByteRange other) const { return begin == other.begin && end == other.end; } }; +/// A Subword range is mechanically the same as a `ByteRange`, but instead of +/// describing a span of bytes, it describes a span of Subword tokens. Using +/// `Annotation.word()` you can switch between the two. +struct SubwordRange { + size_t begin; + size_t end; + const size_t size() const { return end - begin; } + bool operator==(SubwordRange other) const { return begin == other.begin && end == other.end; } +}; + class Response; using CallbackType = std::function; diff --git a/src/translator/html.cpp b/src/translator/html.cpp index ed42b9117..5180a5af5 100644 --- a/src/translator/html.cpp +++ b/src/translator/html.cpp @@ -3,6 +3,7 @@ #include #include "response.h" +#include "translator/definitions.h" #include "xh_scanner.h" namespace { @@ -544,7 +545,12 @@ void HTML::restore(Response &response) { copyTagStack(response, alignments, sourceTokenSpans, targetTokenSpans); assert(targetTokenSpans.size() == debugCountTokens(response.target)); - AnnotatedText target = restoreTarget(response.target, targetTokenSpans); + // Take the spans, and use them to make a taint for every word in the + // translation. Optionally add extra tags, like quality score metadata. + std::vector targetTokenTags; + annotateTagStack(response, targetTokenSpans, targetTokenTags); + + AnnotatedText target = restoreTarget(response.target, targetTokenSpans, targetTokenTags); response.source = source; response.target = target; @@ -592,38 +598,37 @@ AnnotatedText HTML::restoreSource(AnnotatedText const &in, std::vector const &targetTokenSpans) { - auto prevSpan = spans_.cbegin(); +AnnotatedText HTML::restoreTarget(AnnotatedText const &in, std::vector const &targetTokenSpans, + std::vector const &targetTokenTags) { + auto prevTags = spans_.cbegin()->tags; + auto stragglerSpanIt = spans_.cbegin(); auto targetSpanIt = targetTokenSpans.begin(); - auto straggerSpanIt = spans_.cbegin(); + auto targetTagIt = targetTokenTags.begin(); AnnotatedText out = in.apply([&]([[maybe_unused]] ByteRange range, string_view token, bool last) { TokenFormatter formatter(token); // First we scan through spans_ to catch up to the span assigned to this // token. We're only interested in empty spans (empty and void elements) - for (; straggerSpanIt < *targetSpanIt; ++straggerSpanIt) { + for (; stragglerSpanIt < *targetSpanIt; stragglerSpanIt++) { // We're only interested in empty spans or spans that would otherwise get // lost because they didn't align with anything between the spans in // targetSpanIt // TODO That std::find makes this O(N*N) NOT GOOD NOT GOOD - if (straggerSpanIt->size() != 0 && - std::find(targetTokenSpans.begin(), targetTokenSpans.end(), straggerSpanIt) != targetTokenSpans.end()) + if (stragglerSpanIt->size() != 0 && + std::find(targetTokenSpans.begin(), targetTokenSpans.end(), stragglerSpanIt) != targetTokenSpans.end()) continue; - formatter.append(prevSpan->tags, straggerSpanIt->tags); - - // Note: here, not in 3rd part of for-statement because we don't want to - // set prevSpan if the continue clause at the beginning of this for-loop - // was hit. - prevSpan = straggerSpanIt; + formatter.append(prevTags, stragglerSpanIt->tags); + prevTags = stragglerSpanIt->tags; } // Now do the same thing but for our target set of tags. Note that we cannot // combine this in the for-loop above (i.e. `span_it <= *targetSpanIt`) // because there is no guarantee that the order in `targetTokenSpans` is // the same as that of `spans`. - formatter.append(prevSpan->tags, (*targetSpanIt)->tags); + + formatter.append(prevTags, *targetTagIt); // If this is the last token of the response, close all open tags. if (last) { @@ -632,11 +637,12 @@ AnnotatedText HTML::restoreTarget(AnnotatedText const &in, std::vectortags.empty()); - formatter.append((*targetSpanIt)->tags, HTML::TagStack()); + formatter.append(*targetTagIt, HTML::TagStack()); } - prevSpan = *targetSpanIt; + prevTags = *targetTagIt; ++targetSpanIt; + ++targetTagIt; return std::move(formatter.html()); }); @@ -674,6 +680,56 @@ void HTML::copyTagStack(Response const &response, std::vector const &targetTokenSpans, + std::vector &targetTokenTags) { + auto spanIt = targetTokenSpans.begin(); + for (size_t sentenceIdx = 0; sentenceIdx < response.target.numSentences(); ++sentenceIdx) { + // Sentence prefix + targetTokenTags.push_back((*spanIt)->tags); + spanIt++; + + // Offset in targetTokenTags at which this sentence's tags start. + size_t tagOffset = targetTokenTags.size(); + + // Initially, just copy the span's tags to this token + for (size_t t = 0; t < response.target.numWords(sentenceIdx); ++t) { + targetTokenTags.emplace_back((*spanIt)->tags); + spanIt++; + } + + // If we have quality score information, add that as metadata as well. + if (!response.qualityScores.empty()) { + auto const &sentenceQuality = response.qualityScores[sentenceIdx]; + // Create a single tag for this sentence with sentence level info + Tag *sentenceTag = makeTag({Tag::ELEMENT, "font"}); + sentenceTag->attributes += format(" x-bergamot-sentence-index=\"{}\" x-bergamot-sentence-score=\"{}\"", + sentenceIdx, sentenceQuality.sentenceScore); + + // Add that tag to all tokens in this sentence. + for (size_t tokenIdx = 0; tokenIdx < response.target.numWords(sentenceIdx); ++tokenIdx) { + targetTokenTags[tagOffset + tokenIdx].push_back(sentenceTag); + } + + // Add word level tags as well to all tokens that make up a word. + for (size_t wordIdx = 0; wordIdx < sentenceQuality.wordRanges.size(); ++wordIdx) { + Tag *wordTag = makeTag({Tag::ELEMENT, "font"}); + wordTag->attributes += format(" x-bergamot-word-index=\"{}\" x-bergamot-word-score=\"{}\"", wordIdx, + sentenceQuality.wordScores[wordIdx]); + auto const &range = sentenceQuality.wordRanges[wordIdx]; + for (size_t tokenIdx = range.begin; tokenIdx < range.end; ++tokenIdx) { + targetTokenTags[tagOffset + tokenIdx].push_back(wordTag); + } + } + } + } + + // Suffix + targetTokenTags.push_back((*spanIt)->tags); + spanIt++; + + assert(spanIt == targetTokenSpans.end()); +} + // Reports if token `str` is likely to be a continuation of a word. This is used // to determine whether we should share the markup, or whether we should see // this token as a fresh start. This implementation will treat "hello[world]" diff --git a/src/translator/html.h b/src/translator/html.h index c704c5904..f3c6dad19 100644 --- a/src/translator/html.h +++ b/src/translator/html.h @@ -162,7 +162,7 @@ class HTML { void restore(Response &response); private: - using SpanIterator = std::vector::const_iterator; + using SpanIterator = std::vector::iterator; using AnnotatedText = marian::bergamot::AnnotatedText; /// Reconstructs HTML in `response.source` (passed as `in`) and makes a list @@ -175,7 +175,8 @@ class HTML { /// Inserts the HTML into `response.target` (passed as `in`) based on /// `targetTokenSpans`, which points to a `Span` for each token (subword) in /// `response.target`. - AnnotatedText restoreTarget(AnnotatedText const &in, std::vector const &targetTokenSpans); + AnnotatedText restoreTarget(AnnotatedText const &in, std::vector const &targetTokenSpans, + std::vector const &targetTokenTags); /// Utilities to test whether subword `str` is part of a word together with /// the subword `prev`, or a separate word. Basically *does `str` start with @@ -190,6 +191,9 @@ class HTML { std::vector const &sourceTokenSpans, std::vector &targetTokenSpans); + void annotateTagStack(Response const &response, std::vector const &targetTokenSpans, + std::vector &targetTokenTags); + /// Turns the alignment scores in `response.alignments` into one source token /// per target token. Has some heuristics to keep all target tokens of a /// single word pointing to the same span, and prefers spans with more markup diff --git a/src/translator/quality_estimator.cpp b/src/translator/quality_estimator.cpp index 936d293a4..24ca2c2aa 100644 --- a/src/translator/quality_estimator.cpp +++ b/src/translator/quality_estimator.cpp @@ -27,7 +27,7 @@ Response::SentenceQualityScore UnsupervisedQualityEstimator::computeSentenceScor const float sentenceScore = std::accumulate(std::begin(wordScores), std::end(wordScores), float(0.0)) / wordScores.size(); - return {wordScores, subwordToWords(wordIndices, target, sentenceIdx), sentenceScore}; + return {wordScores, wordIndices, sentenceScore}; } LogisticRegressorQualityEstimator::Matrix::Matrix(const size_t rowsParam, const size_t colsParam) @@ -160,7 +160,7 @@ Response::SentenceQualityScore LogisticRegressorQualityEstimator::computeSentenc const float sentenceScore = std::accumulate(std::begin(wordScores), std::end(wordScores), float(0.0)) / wordScores.size(); - return {wordScores, subwordToWords(wordIndices, target, sentenceIdx), sentenceScore}; + return {wordScores, wordIndices, sentenceScore}; } std::vector LogisticRegressorQualityEstimator::predict(const Matrix& features) const { @@ -267,22 +267,4 @@ std::vector mapWords(const std::vector& logProbs, const Ann return wordIndices; } -std::vector subwordToWords(const std::vector& wordIndices, const AnnotatedText& target, - const size_t sentenceIdx) { - std::vector words; - - for (const SubwordRange& wordIndice : wordIndices) { - size_t wordBegin = target.wordAsByteRange(sentenceIdx, wordIndice.begin).begin; - size_t wordEnd = target.wordAsByteRange(sentenceIdx, wordIndice.end).begin; - - if (isspace(target.text.at(wordBegin))) { - ++wordBegin; - } - - words.emplace_back(ByteRange{wordBegin, wordEnd}); - } - - return words; -} - } // namespace marian::bergamot diff --git a/src/translator/quality_estimator.h b/src/translator/quality_estimator.h index 3d2fd68ea..b8d15963c 100644 --- a/src/translator/quality_estimator.h +++ b/src/translator/quality_estimator.h @@ -21,8 +21,6 @@ class QualityEstimator { virtual void computeQualityScores(const Histories &histories, Response &response) const = 0; }; -using SubwordRange = ByteRange; - /// Unsupervised Quality Estimator model. It uses the translator model's log probabilities (log probs) as a proxy for /// quality scores. Then, for a given word, its quality score is computed by taking the mean of the log probs of the /// tokens that make it up. The sentence score is the mean of all word's log probs. @@ -209,14 +207,4 @@ inline std::shared_ptr createQualityEstimator(const AlignedMem std::vector mapWords(const std::vector &logProbs, const AnnotatedText &target, const size_t sentenceIdx); -/// Given a vector of subwordRanges, it maps the elements to be real words rather than sublevel tokens. The words are -/// represented through ByteRanges. - -/// @param [in] wordIndices: A vector where each element correspond to the index of a real word and its values are -/// represented by the SubwordRanges (which are aliases of ByteRanges) which represents sublevel token positions -/// @param [in] target: AnnotatedText target value -/// @param [in] sentenceIdx: the id of a candidate sentence -std::vector subwordToWords(const std::vector &wordIndices, const AnnotatedText &target, - const size_t sentenceIdx); - } // namespace marian::bergamot diff --git a/src/translator/response.cpp b/src/translator/response.cpp index 8e623a7d6..135ec4715 100644 --- a/src/translator/response.cpp +++ b/src/translator/response.cpp @@ -142,4 +142,22 @@ std::vector remapAlignments(const Response &first, const Response &se return alignments; } +std::vector getWordByteRanges(const Response &response, size_t sentenceIdx) { + std::vector wordByteRanges; + wordByteRanges.reserve(response.qualityScores[sentenceIdx].wordRanges.size()); + + for (auto &&word : response.qualityScores[sentenceIdx].wordRanges) { + size_t wordBegin = response.target.wordAsByteRange(sentenceIdx, word.begin).begin; + size_t wordEnd = response.target.wordAsByteRange(sentenceIdx, word.end).begin; + + if (std::isspace(response.target.text.at(wordBegin))) { + ++wordBegin; + } + + wordByteRanges.emplace_back(ByteRange{wordBegin, wordEnd}); + } + + return wordByteRanges; +} + } // namespace marian::bergamot diff --git a/src/translator/response.h b/src/translator/response.h index 74463eda2..af05e1074 100644 --- a/src/translator/response.h +++ b/src/translator/response.h @@ -30,8 +30,8 @@ struct Response { struct SentenceQualityScore { /// Quality score of each translated word std::vector wordScores; - /// Each word position in the translated text - std::vector wordByteRanges; + /// Position of start and end token of each word in the translated text + std::vector wordRanges; /// Whole sentence quality score (it is composed by the mean of its words) float sentenceScore = 0.0; }; @@ -77,6 +77,8 @@ struct Response { std::vector remapAlignments(const Response &first, const Response &second); +std::vector getWordByteRanges(Response const &response, size_t sentenceIdx); + } // namespace bergamot } // namespace marian diff --git a/wasm/bindings/response_bindings.cpp b/wasm/bindings/response_bindings.cpp index 11bc4cabb..51a46ab84 100644 --- a/wasm/bindings/response_bindings.cpp +++ b/wasm/bindings/response_bindings.cpp @@ -10,7 +10,6 @@ #include "response.h" using Response = marian::bergamot::Response; -using SentenceQualityScore = marian::bergamot::Response::SentenceQualityScore; using ByteRange = marian::bergamot::ByteRange; using namespace emscripten; @@ -20,25 +19,14 @@ EMSCRIPTEN_BINDINGS(byte_range) { value_object("ByteRange").field("begin", &ByteRange::begin).field("end", &ByteRange::end); } -std::vector getQualityScores(const Response& response) { return response.qualityScores; } - EMSCRIPTEN_BINDINGS(response) { class_("Response") .constructor<>() .function("size", &Response::size) - .function("getQualityScores", &getQualityScores) .function("getOriginalText", &Response::getOriginalText) .function("getTranslatedText", &Response::getTranslatedText) .function("getSourceSentence", &Response::getSourceSentenceAsByteRange) .function("getTranslatedSentence", &Response::getTargetSentenceAsByteRange); - value_object("SentenceQualityScore") - .field("wordScores", &SentenceQualityScore::wordScores) - .field("wordByteRanges", &SentenceQualityScore::wordByteRanges) - .field("sentenceScore", &SentenceQualityScore::sentenceScore); - register_vector("VectorResponse"); - register_vector("VectorSentenceQualityScore"); - register_vector("VectorFloat"); - register_vector("VectorByteRange"); } diff --git a/wasm/test_page/css/index.css b/wasm/test_page/css/index.css index bbc5bf147..6ed642232 100644 --- a/wasm/test_page/css/index.css +++ b/wasm/test_page/css/index.css @@ -73,7 +73,7 @@ label { align-self: center; } -textarea { +textarea, .output-area { padding: 1rem; font-family: sans-serif; font-size: 1rem; @@ -97,3 +97,22 @@ button:hover { #output { background-color: #f4f4f4; } + +.output-area [x-bergamot-word-score].bad { + background-image: + linear-gradient(45deg, transparent 65%, red 80%, transparent 90%), + linear-gradient(135deg, transparent 5%, red 15%, transparent 25%), + linear-gradient(135deg, transparent 45%, red 55%, transparent 65%), + linear-gradient(45deg, transparent 25%, red 35%, transparent 50%); + background-repeat:repeat-x; + background-size: 8px 2px; + background-position:0 95%; +} + +.output-area [x-bergamot-sentence-score].bad { + background: rgba(255, 128, 128, 0.8); +} + +.output-area [x-bergamot-sentence-index].highlight-sentence { + background: rgba(255, 255, 128, 0.8); +} \ No newline at end of file diff --git a/wasm/test_page/index.html b/wasm/test_page/index.html index 86eae4637..3f48117e1 100644 --- a/wasm/test_page/index.html +++ b/wasm/test_page/index.html @@ -24,7 +24,7 @@ To - +
diff --git a/wasm/test_page/js/index.js b/wasm/test_page/js/index.js index 7cb365702..166f0f27b 100644 --- a/wasm/test_page/js/index.js +++ b/wasm/test_page/js/index.js @@ -38,22 +38,58 @@ const _prepareTranslateOptions = (paragraphs) => { return translateOptions; }; +const textToHTML = (text) => { + const div = document.createElement('div'); + div.appendChild(document.createTextNode(text)); + return div.innerHTML; +}; + const translateCall = () => { - const text = document.querySelector("#input").value + " "; + const text = document.querySelector("#input").value; if (!text.trim().length) return; - const paragraphs = text.split("\n"); + const paragraphs = text.split(/\n+/).map(textToHTML); // escape HTML const translateOptions = _prepareTranslateOptions(paragraphs); - $("#output").setAttribute("disabled", true); const lngFrom = langFrom.value; const lngTo = langTo.value; worker.postMessage(["translate", lngFrom, lngTo, paragraphs, translateOptions]); }; +const addQualityClasses = (root) => { + // You can do this wit CSS variables, calc() and min/max, but JS is just easier + + root.querySelectorAll('[x-bergamot-sentence-score]').forEach(el => { + // Note: these thresholds are just examples, they are not good thresholds! + el.classList.toggle('bad', parseFloat(el.getAttribute('x-bergamot-sentence-score')) > -0.1); + }); + + root.querySelectorAll('[x-bergamot-word-score]').forEach(el => { + // Note: these thresholds are just examples, they are not good thresholds! + el.classList.toggle('bad', parseFloat(el.getAttribute('x-bergamot-word-score')) > -0.1); + }); + + // Add tooltips to each (sub)word with sentence and word score. + root.querySelectorAll('[x-bergamot-sentence-score] > [x-bergamot-word-score]').forEach(el => { + const sentenceScore = parseFloat(el.parentNode.getAttribute('x-bergamot-sentence-score')); + const wordScore = parseFloat(el.getAttribute('x-bergamot-word-score')); + el.title = `Sentence: ${sentenceScore} Word: ${wordScore}`; + }); +} + worker.onmessage = function (e) { if (e.data[0] === "translate_reply" && e.data[1]) { - document.querySelector("#output").value = e.data[1].join("\n\n"); - $("#output").removeAttribute("disabled"); + // Clear output of previous translation + document.querySelector("#output").innerHTML = ''; + + // Add each translation in its own div to have a known root in which the + // sentence ids are unique. Used for highlighting sentences. + e.data[1].forEach(translatedHTML => { + const translation = document.createElement('div'); + translation.classList.add('translation'); + translation.innerHTML = translatedHTML; + addQualityClasses(translation); + document.querySelector("#output").appendChild(translation); + }); } else if (e.data[0] === "load_model_reply" && e.data[1]) { status(e.data[1]); translateCall(); @@ -76,8 +112,8 @@ const loadModel = () => { console.log(`Loading model '${lngFrom}${lngTo}'`); worker.postMessage(["load_model", lngFrom, lngTo]); } else { - const input = document.querySelector("#input").value; - document.querySelector("#output").value = input; + const input = textToHTML(document.querySelector("#input").value); + document.querySelector("#output").innerHTML = input; } }; @@ -95,6 +131,14 @@ $(".swap").addEventListener("click", e => { loadModel(); }); +$('#output').addEventListener('mouseover', e => { + const root = e.target.closest('.translation'); + const sentence = e.target.parentNode.hasAttribute('x-bergamot-sentence-index') ? e.target.parentNode.getAttribute('x-bergamot-sentence-index') : null; + document.querySelectorAll('#output font[x-bergamot-sentence-index]').forEach(el => { + el.classList.toggle('highlight-sentence', el.getAttribute('x-bergamot-sentence-index') === sentence && el.closest('.translation') === root); + }) +}) + function init() { // try to guess input language from user agent let myLang = navigator.language; diff --git a/wasm/test_page/js/worker.js b/wasm/test_page/js/worker.js index 292e2d6dd..aa4d40497 100644 --- a/wasm/test_page/js/worker.js +++ b/wasm/test_page/js/worker.js @@ -137,13 +137,11 @@ const translate = (from, to, input, translateOptions) => { const listSourceText = _parseSourceText(vectorResponse); const listTranslatedTextSentences = _parseTranslatedTextSentences(vectorResponse); const listSourceTextSentences = _parseSourceTextSentences(vectorResponse); - const listTranslatedTextSentenceQualityScores = _parseTranslatedTextSentenceQualityScores(vectorResponse); log(`Source text: ${listSourceText}`); log(`Translated text: ${listTranslatedText}`); log(`Translated sentences: ${JSON.stringify(listTranslatedTextSentences)}`); log(`Source sentences: ${JSON.stringify(listSourceTextSentences)}`); - log(`Translated sentence quality scores: ${JSON.stringify(listTranslatedTextSentenceQualityScores)}`); return listTranslatedText; } finally { @@ -292,44 +290,6 @@ const _parseSourceTextSentences = (vectorResponse) => { return result; } -const _parseTranslatedTextSentenceQualityScores = (vectorResponse) => { - const result = []; - for (let i = 0; i < vectorResponse.size(); i++) { - const response = vectorResponse.get(i); - const translatedText = response.getTranslatedText(); - const vectorSentenceQualityScore = response.getQualityScores(); - log(`No. of sentences: "${vectorSentenceQualityScore.size()}"`); - const sentenceQualityScores = []; - for (let sentenceIndex=0; sentenceIndex < vectorSentenceQualityScore.size(); sentenceIndex++) { - const sentenceQualityScoreObject = vectorSentenceQualityScore.get(sentenceIndex); - const wordByteRangeList = []; - const wordList = []; - const wordScoreList = []; - const vectorWordScore = sentenceQualityScoreObject.wordScores; - const vectorWordByteRange = sentenceQualityScoreObject.wordByteRanges; - - for (let wordIndex = 0; wordIndex < vectorWordScore.size(); wordIndex++) { - const wordScore = vectorWordScore.get(wordIndex); - const wordByteRange = vectorWordByteRange.get(wordIndex); - wordScoreList.push(wordScore); - wordByteRangeList.push(wordByteRange); - const word = _getSubString(translatedText, wordByteRange); - wordList.push(word); - } - - const sentenceQualityScore = { - wordByteRanges: wordByteRangeList, - words: wordList, - wordScores: wordScoreList, - sentenceScore: sentenceQualityScoreObject.sentenceScore - }; - sentenceQualityScores.push(sentenceQualityScore); - } - result.push(sentenceQualityScores); - } - return result; -} - const _prepareResponseOptions = (translateOptions) => { let vectorResponseOptions = new Module.VectorResponseOptions; translateOptions.forEach(translateOption => {