forked from PaddlePaddle/PaddleClas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
circlemargin.py
61 lines (49 loc) · 2.16 KB
/
circlemargin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# reference: https://arxiv.org/abs/2002.10857
import math
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
class CircleMargin(nn.Layer):
def __init__(self, embedding_size, class_num, margin, scale):
super(CircleMargin, self).__init__()
self.scale = scale
self.margin = margin
self.embedding_size = embedding_size
self.class_num = class_num
self.weight = self.create_parameter(
shape=[self.embedding_size, self.class_num],
is_bias=False,
default_initializer=paddle.nn.initializer.XavierNormal())
def forward(self, input, label):
feat_norm = paddle.sqrt(
paddle.sum(paddle.square(input), axis=1, keepdim=True))
input = paddle.divide(input, feat_norm)
weight_norm = paddle.sqrt(
paddle.sum(paddle.square(self.weight), axis=0, keepdim=True))
weight = paddle.divide(self.weight, weight_norm)
logits = paddle.matmul(input, weight)
if not self.training or label is None:
return logits
alpha_p = paddle.clip(-logits.detach() + 1 + self.margin, min=0.)
alpha_n = paddle.clip(logits.detach() + self.margin, min=0.)
delta_p = 1 - self.margin
delta_n = self.margin
m_hot = F.one_hot(label.reshape([-1]), num_classes=logits.shape[1])
logits_p = alpha_p * (logits - delta_p)
logits_n = alpha_n * (logits - delta_n)
pre_logits = logits_p * m_hot + logits_n * (1 - m_hot)
pre_logits = self.scale * pre_logits
return pre_logits