forked from PaddlePaddle/PaddleClas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fc.py
48 lines (39 loc) · 1.54 KB
/
fc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.nn as nn
from ..utils import get_param_attr_dict
class FC(nn.Layer):
def __init__(self, embedding_size, class_num, **kwargs):
super(FC, self).__init__()
self.embedding_size = embedding_size
self.class_num = class_num
weight_attr = paddle.ParamAttr(
initializer=paddle.nn.initializer.XavierNormal())
if 'weight_attr' in kwargs:
weight_attr = get_param_attr_dict(kwargs['weight_attr'])
bias_attr = None
if 'bias_attr' in kwargs:
bias_attr = get_param_attr_dict(kwargs['bias_attr'])
self.fc = nn.Linear(
self.embedding_size,
self.class_num,
weight_attr=weight_attr,
bias_attr=bias_attr)
def forward(self, input, label=None):
out = self.fc(input)
return out