This subdirectory provides support for building LibreOffice as WASM, with the Emscripten toolchain.
You can build LibreOffice for WASM for two separate purposes: 1) Either to produce a WASM binary of LibreOffice as such, using Qt5 for its GUI, or 2) just compiling LibreOffice core ("LibreOffice Technology") to WASM without any UI for use in other software that provides the UI, like Collabora Online built as WASM.
The first purpose was the original reason for the WASM port and this document was originally written with that in mind. For the second purpose, look towards the end of the document for the section "Building headless LibreOffice as WASM for use in another product".
The build generates a Writer-only LO build. You should be able to run either
$ emrun --serve_after_close instdir/program/qt_soffice.html
$ emrun --serve_after_close workdir/LinkTarget/Executable/qt_vcldemo.html
$ emrun --serve_after_close workdir/LinkTarget/Executable/qt_wasm-qt5-mandelbrot.html
To run the WASM Qt-LibreOffice, it also works to just use the Chromium browser on Linux against a local web server as long as the following files (that have ended up after the build in instdir/program) are available in a folder through the web server:
qtloader.js qtlogo.svg qt_soffice.html soffice.data soffice.data.js.metadata soffice.html soffice.html.linkdeps soffice.js soffice.wasm soffice.worker.js
Either the instdir/program folder itself can be available in the web server, or you copy those files to some place that is. No emrun or container (as perhaps used to build the thing) necessary.
Like this:
chromium-browser --enable-features=SharedArrayBuffer http://localhost/tml/wasm/
Where the above mentioned files have been copied to a folder that shows up as tml/wasm on localhost, and qt_soffice.html has been renamed to index.html.
REMINDER: Always start new tabs in the browser, reload might fail / cache! INFO: latest browser won't work anymore with 0.0.0.0 and need 127.0.0.1.
We're using Qt 5.15.2 with Emscripten 2.0.31. There are a bunch of Qt patches to fix the most grave bugs. Also newer Emscripten versions have various bugs with the FS image support.
- See below under Docker build for another build option
https://emscripten.org/docs/getting_started/index.html
git clone https://github.com/emscripten-core/emsdk.git
./emsdk install 2.0.31
./emsdk activate --embedded 2.0.31
Example bashrc
scriptlet:
EMSDK_ENV=$HOME/Development/libreoffice/git_emsdk/emsdk_env.sh
[ -f "$EMSDK_ENV" ] && \. "$EMSDK_ENV" 1>/dev/null 2>&1
https://doc.qt.io/qt-5/wasm.html
Most of the information from https://doc.qt.io/qt-6/wasm.html is still valid for Qt5; generally the Qt6 WASM documentation is much better, because it incorporated many information from the Qt Wiki.
FWIW: Qt 5.15 LTS is not maintained publicly and Qt WASM has quite a few bugs. Most WASM fixes from Qt 6 are needed for Qt 5.15 too. Allotropia offers a Qt repository with the necessary patches cherry-picked.
git clone https://github.com/allotropia/qt5.git
cd qt5
git checkout v5.15.2+wasm
./init-repository --module-subset=qtbase
./configure -xplatform wasm-emscripten -feature-thread -prefix <whatever>
make -j<CORES> module-qtbase
Optionally you can add the configure flag "-compile-examples". But then you also have to patch at least mkspecs/wasm-emscripten/qmake.conf with EXIT_RUNTIME=0, otherwise they will fail to run. In addition, building with examples will break with some of them, but at that point Qt already works and also most examples. Building with examples will break with some of them, but at that point Qt already works. Or just skip them. Other interesting flags might be "-nomake tests -no-pch -ccache".
Linking takes quite a long time, because emscripten-finalize rewrites the whole WASM files with some options. This way the LO WASM needs at least 64GB RAM. For faster link times add "-s WASM_BIGINT=1", change to ASSERTIONS=1 nd use -g3 to prevent rewriting the WASM file and generating source maps (see emscripten.py, finalize_wasm, and avoid modify_wasm = True). This is just needed for Qt examples, as LO already uses the correct flags!
The install is not really needed, as LO currently just uses qtbase on its own. You can do
make -j<CORES> install
or make -j8 -C qtbase/src install_subtargets
Current Qt fails to start the demo webserver: https://bugreports.qt.io/browse/QTCREATORBUG-24072
Use emrun --serve_after_close
to run Qt WASM demos.
autogen.sh
is patched to use emconfigure. That basically sets various
environment vars, especially EMMAKEN_JUST_CONFIGURE
, which will create the
correct output file names, checked by configure
(a.out
).
There's a distro config for WASM, but it just provides --host=wasm32-local-emscripten, which should be enough setup. The build itself is a cross build and the cross-toolset just depends on a minimal toolset (gcc, libc-dev, flex, bison); all else is build from source, because the final result is not depending on the build system at all.
Recommended configure setup is thusly:
-
grab defaults
--with-distro=LibreOfficeWASM32
-
local config
QT5DIR=/dir/of/git_qt5/qtbase
-
if you want to use ccache on both sides of the build
--with-build-platform-configure-options=--enable-ccache
--enable-ccache
FWIW: it's also possible to build an almost static Linux LibreOffice by just using --disable-dynloading --enable-customtarget-components. System externals are still linked dynamically, but everything else is static.
You can build LO with WASM exceptions, which should be "much" faster then the JS based Emscripten EH handling. For setjmp / longjmp (SjLj) used by the PNG and JPEG libraries error handling, this needs Emscripten 3.1.3+. That builds, but execution still fails early with a signature mismatch call to Task::UpdateMinPeriod in LO's job scheduler code. Unfortunately the build also needs a Qt build with "-s SUPPORT_LONGJMP=wasm", which is incompatible with the JS EH + SjLj.
The LO configure flag is simply an additional --enable-wasm-exceptions. Qt5 can be patched in qtbase/mkspecs/wasm-emscripten/qmake.conf with the addition of
QMAKE_CFLAGS += -s SUPPORT_LONGJMP=wasm
QMAKE_CXXFLAGS += -s SUPPORT_LONGJMP=wasm
tar -chf wasm.tar --xform 's/.*program/lo-wasm/' instdir/program/soffice.* \
instdir/program/qt*
Your HTTP server needs to provide additional headers:
- add_header Cross-Origin-Opener-Policy same-origin
- add_header Cross-Origin-Embedder-Policy require-corp
The default html to use should be qt_soffice.html
Since a few months you can use DWARF information embedded by LLVM into the WASM to debug WASM in Chrome. You need to enable an experimental feature and install an additional extension. The whole setup is described in:
https://developer.chrome.com/blog/wasm-debugging-2020/
This way you don't need source maps (much faster linking!) and can resolve local WASM variables to C++ names!
Per default, the WASM debug build splits the DWARF information into an additional WASM file, postfixed '.debug.wasm'.
If you prefer a controlled environment (sadly emsdk install/activate is not stable over time, as e.g. nodejs versions evolve), that is easy to replicate across different machines - consider the dockerreadme.wasm images we're providing.
Config/setup file see https://git.libreoffice.org/lode/+/ccb36979563635b51215477455953252c99ec013
Run
docker-compose build
in the lode/docker dir to get the container prepared. Run
PARALLELISM=4 BUILD_OPTIONS= BUILD_TARGET=build docker-compose run --rm \
-e PARALLELISM -e BUILD_TARGET -e BUILD_OPTIONS builder
to perform an actual srcdir != builddir
build; the container mounts
checked-out git repo and output dir via docker-compose.yml
(so make
sure the path names there match your setup):
The lode setup expects, inside the lode/docker subdir, the following directories:
- core (
git checkout
) - workdir (the output dir - gets written into)
- cache (
ccache tree
) - tarballs (external project tarballs gets written and cached there)
My post to Discord #emscripten:
"I'm looking for a way to do an abstract call
from one WASM C++ object to another WASM C++ object, so like FFI / WebIDL,
just within WASM. All my code is C++ and normally I have bridge code, with
assembler to implement the function call /RTTI and exception semantics of the
specified platform. Code is at
https://cgit.freedesktop.org/libreoffice/core/tree/bridges/source/cpp_uno.
I've read a bit about call_indirect
and stuff, but I don't have yet a good
idea, how I could implement this (and there is an initial feature/wasm branch
for the interested). I probably need some fixed lookup table, like on iOS,
because AFAIK you can't dynamically generate code in WASM. So any pointers or
ideas for an implementation? I can disassemble some minimalistic WASM example
and read clang code for WASM_EmscriptenInvoke
, but if there were some
standalone code or documentation I'm missing, that would be nice to know."
We basically would go the same way then the other backends. Write the bridge in
C++, which is probably largely boilerplate code, but the function call in WAT
(https://github.com/WebAssembly/wabt) based on the LLVM WASM calling
conventions in WASM_EmscriptenInvoke
. I didn't get a reply to that question for
hours. Maybe I'll open an Emscripten issue, if we really have to implement
this.
WASM dynamic dispatch:
nm -s
should list the symbols in the archive, based on the index generated by ranlib. If you get linking errors that archive has no index.
This is closed, but not really fixed IMHO:
There is a good summary in:
Summary: you can't use modules and threads.
This is mentioned at the end of:
The usage of MAIN_MODULE
and SIDE_MODULE
has other problems, a major one IMHO is symbol resolution at runtime only.
So this works really more like plugins in the sense of symbol resolution without dependencies /
rpath.
There is some clang-level dynamic-linking in progress (WASM dlload). The following link is already a bit old, but I found it a god summary of problems to expect:
More info on Qt WASM emscripten pthreads:
WASM needs -pthread
at compile, not just link time for atomics support. Alternatively you can provide
-s USE_PTHREADS=1
, but both don't seem to work reliable, so best provide both.
emscripten-core/emscripten#10370
The output file must have the prefix .o, otherwise the WASM files will get a
node.js
shebang (!) and ranlib won't be able to index the library (link errors).
Qt with threads has further memory limit. From Qt configure:
Project MESSAGE: Setting PTHREAD_POOL_SIZE to 4
Project MESSAGE: Setting TOTAL_MEMORY to 1GB
You can actually allocate 4GB:
LO uses a nested event loop to run dialogs in general, but that won't work, because you can't drive the browser event loop. like VCL does with the system event loop in the various VCL backends. Changing this will need some major work (basically dropping Application::Execute).
But with the know problems with exceptions and threads, this might change:
- emscripten-core/emscripten#11518
- emscripten-core/emscripten#11503
- emscripten-core/emscripten#11233
- emscripten-core/emscripten#12035
We're also using emconfigure at the moment. Originally I patched emscripten, because it
wouldn't create the correct a.out file for C++ configure tests. Later I found that
the emconfigure
sets EMMAKEN_JUST_CONFIGURE
to work around the problem.
ICU bug:
Alternative, probably:
There is a wasm64, but that still uses 32bit pointers!
Old outdated docs:
Reverted patch:
Generally https://emscripten.org/docs/porting:
- https://emscripten.org/docs/porting/guidelines/api_limitations.html#api-limitations
- https://emscripten.org/docs/porting/files/file_systems_overview.html#file-system-overview
- https://emscripten.org/docs/porting/pthreads.html
- https://emscripten.org/docs/porting/emscripten-runtime-environment.html
This will be interesting:
This didn't help much yet:
Emscripten supports standalone WASI binaries:
- https://github.com/emscripten-core/emscripten/wiki/WebAssembly-Standalone
- https://www.qt.io/qt-examples-for-webassembly
- http://qtandeverything.blogspot.com/2017/06/qt-for-web-assembly.html
- http://qtandeverything.blogspot.com/2020/
- https://emscripten.org/docs/api_reference/Filesystem-API.html
- https://discuss.python.org/t/add-a-webassembly-wasm-runtime/3957/12
- http://git.savannah.gnu.org/cgit/config.git
- https://webassembly.org/specs/
- https://developer.chrome.com/docs/native-client/
- https://emscripten.org/docs/getting_started/downloads.html
- https://github.com/openpgpjs/openpgpjs/blob/master/README.md#getting-started
- https://developer.mozilla.org/en-US/docs/WebAssembly/Using_the_JavaScript_API
- https://github.com/bytecodealliance/wasmtime/blob/main/docs/WASI-intro.md
- https://www.ip6.li/de/security/x.509_kochbuch/openssl-fuer-webassembly-compilieren
- https://emscripten.org/docs/introducing_emscripten/about_emscripten.html#about-emscripten-porting-code
- https://emscripten.org/docs/compiling/Building-Projects.html
Follow the instructions in the first part of this document.
You don't need any dependencies other than those that normally are downloaded and compiled when building LibreOffice.
For instance, this autogen.input works for me:
--disable-debug
--enable-sal-log
--disable-crashdump
--host=wasm32-local-emscripten
--disable-gui
--with-main-module=writer
For building LO core for use in COWASM, it is known to work to use Emscripten 3.1.30 (and not just 2.0.31 which is what the LO+Qt5 work has been using).
After all, in this case you are building LO core headless for it to be used by other software.
Note that a soffice.wasm will be built, but that is just because of how the makefilery has been set up. We do need the soffice.data file that contains the in-memory file system needed by the LibreOffice Technology core code during run-time, though. That is at the moment built as a side-effect when building soffice.wasm.