The codes of HAWPv3 are placed in the directory of hawp/ssl.
Model Name | Comments | MD5 |
---|---|---|
hawpv3-fdc5487a.pth | Trained on the images of Wireframe dataset | fdc5487a43e3d42f6b2addf79d8b930d |
hawpv3-imagenet-03a84.pth | Trained on 100k images of ImageNet dataset | 03a8400e9474320f2b42973d1ba19487 |
-
Run the following command line to obtain wireframes from HAWPv3 model
hawpv3-fdc5487a.pth
python -m hawp.ssl.predict --ckpt checkpoints/hawpv3-fdc5487a.pth \ --threshold 0.05 \ --img {filename.png}
hawpv3-imagenet-03a84.pth
python -m hawp.ssl.predict --ckpt checkpoints/hawpv3-imagenet-03a84.pth \ --threshold 0.05 \ --img {filename.png}
-
A running example on the DTU-24 images
python -m hawp.ssl.predict --ckpt checkpoints/hawpv3-imagenet-03a84.pth \ --threshold 0.05 \ --img ~/datasets/DTU/scan24/image/*.png \ --saveto docs/figures/dtu-24 --ext png \
python -m hawp.ssl.train --help
usage: train.py [-h] --datacfg DATACFG --modelcfg MODELCFG --name NAME
[--pretrained PRETRAINED] [--overwrite] [--tf32]
[--dtm {True,False}] [--batch-size BATCH_SIZE]
[--num-workers NUM_WORKERS] [--base-lr BASE_LR]
[--steps STEPS [STEPS ...]] [--gamma GAMMA] [--epochs EPOCHS]
[--seed SEED] [--iterations ITERATIONS]
optional arguments:
-h, --help show this help message and exit
--datacfg DATACFG filepath of the data config
--modelcfg MODELCFG filepath of the model config
--name NAME the name of experiment
--pretrained PRETRAINED
the pretrained model
--overwrite [Caution!] the option to overwrite an existed
experiment
--tf32 toggle on the TF32 of pytorch
--dtm {True,False} toggle the deterministic option of CUDNN. This option
will affect the replication of experiments
training recipe:
--batch-size BATCH_SIZE
the batch size of training
--num-workers NUM_WORKERS
the number of workers for training
--base-lr BASE_LR the initial learning rate
--steps STEPS [STEPS ...]
the steps of the scheduler
--gamma GAMMA the lr decay factor
--epochs EPOCHS the number of epochs for training
--seed SEED the random seed for training
--iterations ITERATIONS
the number of training iterations