forked from artyom-beilis/zx_spectrum_deep_learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_f16.c
567 lines (508 loc) · 14.7 KB
/
train_f16.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
#ifdef __linux
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "train_samples.h"
#include "test_samples.h"
//#include "half.hpp"
#else
#ifndef __linux
#include "fixed12_math.h"
#endif
#include <stdio.h>
const int train_samples_size=64;
#include "enable_timer.h"
#endif
#include "config.h"
#define INTERM_SIZE (INPSIZE - KSIZE + 1)
#define POOL_SIZE (INTERM_SIZE >> 1)
#define FLAT_SIZE (POOL_SIZE*POOL_SIZE*KERNELS)
#define FIX_SHIFT 12
#define FIX_SCALE (1 << FIX_SHIFT)
#define FIX_ROUND (1 << (FIX_SHIFT-1))
#define FIX_MASK (FIX_SCALE - 1)
#ifdef __linux
short fixed12_mpl_ref(short a,short b)
{
int neg = (a < 0) ^ (b < 0);
if(a < 0)
a=-a;
if(b < 0)
b=-b;
int res = (int)(a) * b;
if(neg)
res = -res;
res += FIX_ROUND;
res >>= 12;
return res;
}
int fixed12_mpl_no_shift(short a,short b)
{
int neg = (a < 0) ^ (b < 0);
if(a < 0)
a=-a;
if(b < 0)
b=-b;
unsigned short au = a;
unsigned short bu = b;
unsigned res = (unsigned)au * bu;
int val = res;
if(neg)
val = -val;
return val;
}
#define real_mpl(a,b) fixed12_mpl_ref(a,b)
#define real_mpl_nshift(a,b) fixed12_mpl_no_shift(a,b)
#else // zx spectrum
#define real_mpl(a,b) fixed12_mpl((a),(b))
#define real_mpl_nshift(a,b) mpl_2int_to_long(a,b)
#endif
#define from_float(a) ((short)((a)*FIX_SCALE))
#define to_float(a) ((float)(a) * ( 1.0f / FIX_SCALE))
typedef short RealType;
#define real_zero 0
#define real_one FIX_SCALE
#define real_half(v) ((v)>>1)
inline RealType max(RealType a,RealType b)
{
return a > b ? a : b;
}
inline RealType relu(RealType x)
{
if( x > real_zero)
return x;
return real_zero;
}
typedef struct Params {
RealType conv_kernel[KERNELS][KSIZE][KSIZE];
RealType conv_offset[KERNELS];
RealType ip_mat[CLASS_NO][FLAT_SIZE];
RealType ip_offset[CLASS_NO];
} Params;
typedef struct Layers {
RealType conv_res[KERNELS][INTERM_SIZE][INTERM_SIZE];
RealType pool_res[FLAT_SIZE];
RealType probs[CLASS_NO];
} Layers;
typedef struct AllData {
Params params;
Params params_diffs;
Params params_vel;
Layers blobs;
Layers blob_diffs;
} AllData;
AllData data;
void conv_forward(unsigned char *digit,RealType kernel[KERNELS][KSIZE][KSIZE],RealType offset[KERNELS],RealType top[KERNELS][INTERM_SIZE][INTERM_SIZE])
{
int n,i,j,r,c;
unsigned char row;
for(r=0;r<INTERM_SIZE;r++) {
for(c=0;c<INTERM_SIZE;c++) {
for(n=0;n<KERNELS;n++)
top[n][r][c] = offset[n];
for(i=0;i<KSIZE;i++) {
row = digit[r+i];
for(j=0;j<KSIZE;j++) {
if((row >> (c+j)) & 1) {
for(n=0;n<KERNELS;n++)
top[n][r][c]+= kernel[n][i][j];
}
}
}
}
}
}
void conv_backward(unsigned char *digit,RealType kernel[KERNELS][KSIZE][KSIZE], RealType offset[KERNELS], RealType top[KERNELS][INTERM_SIZE][INTERM_SIZE],
RealType kernel_d[KERNELS][KSIZE][KSIZE],RealType offset_d[KERNELS],RealType top_d[KERNELS][INTERM_SIZE][INTERM_SIZE])
{
int n,i,j,r,c;
unsigned char row;
for(n=0;n<KERNELS;n++) {
RealType sum = real_zero;
for(i=0;i<INTERM_SIZE;i++) {
for(j=0;j<INTERM_SIZE;j++) {
sum+=top_d[n][i][j];
}
}
offset_d[n] += sum;
}
for(r=0;r<INTERM_SIZE;r++) {
for(c=0;c<INTERM_SIZE;c++) {
for(i=0;i<KSIZE;i++) {
row = digit[r+i];
for(j=0;j<KSIZE;j++) {
if((row >> (c+j)) & 1) {
for(n=0;n<KERNELS;n++)
kernel_d[n][i][j] += top_d[n][r][c];
}
}
}
}
}
}
static unsigned char pooling_selection_mask[FLAT_SIZE];
void max_pool_2x2_relu_forward(RealType bottom[KERNELS][INTERM_SIZE][INTERM_SIZE],RealType top[FLAT_SIZE])
{
int n,r,c,r2,c2,pos,index;
RealType m,tmp;
pos = 0;
for(n=0;n<KERNELS;n++) {
for(r=0;r<POOL_SIZE;r++) {
for(c=0;c<POOL_SIZE;c++) {
r2=r*2;
c2=c*2;;
index=0;
m = bottom[n][r2+0][c2+0];
tmp = bottom[n][r2+0][c2+1];
if(tmp > m) {
index = 1;
m = tmp;
}
tmp = bottom[n][r2+1][c2+0];
if(tmp > m) {
index = 2;
m = tmp;
}
tmp = bottom[n][r2+1][c2+1];
if(tmp > m) {
index = 3;
m = tmp;
}
pooling_selection_mask[pos]=index;
top[pos++] = relu(m);
}
}
}
}
void max_pool_2x2_relu_backward(RealType bottom[KERNELS][INTERM_SIZE][INTERM_SIZE],RealType top[FLAT_SIZE],
RealType bottom_d[KERNELS][INTERM_SIZE][INTERM_SIZE],RealType top_d[FLAT_SIZE])
{
int k,r,c,index,dr,dc;
int pos=0;
for(k=0;k<FLAT_SIZE;k++) {
if(top[k] <= real_zero)
top_d[k] = real_zero;
}
for(k=0;k<KERNELS;k++) {
for(r=0;r<POOL_SIZE;r++) {
for(c=0;c<POOL_SIZE;c++) {
index = pooling_selection_mask[pos];
for(dr=0;dr<2;dr++)
for(dc=0;dc<2;dc++)
bottom_d[k][r*2+dr][c*2+dc]=(dr == (index >> 1) && dc == (index & 1)) ? top_d[pos] : real_zero;
pos++;
}
}
}
}
void ip_forward(RealType bottom[FLAT_SIZE],RealType top[CLASS_NO],RealType offset[CLASS_NO],RealType M[CLASS_NO][FLAT_SIZE])
{
RealType sum;
int i,j;
for(i=0;i<CLASS_NO;i++) {
sum = offset[i];
for(j=0;j<FLAT_SIZE;j++) {
sum += real_mpl(bottom[j],M[i][j]);
}
top[i]=sum;
}
}
void ip_backward(RealType bottom [FLAT_SIZE],RealType top[CLASS_NO],RealType offset[CLASS_NO],RealType M[CLASS_NO][FLAT_SIZE],
RealType bottom_d[FLAT_SIZE],RealType top_d[CLASS_NO],RealType offset_d[CLASS_NO],RealType M_d[CLASS_NO][FLAT_SIZE])
{
int i,j,k;
for(k=0;k<CLASS_NO;k++)
offset_d[k] += top_d[k];
for(j=0;j<FLAT_SIZE;j++)
bottom_d[j] = real_zero;
for(i=0;i<CLASS_NO;i++) {
for(j=0;j<FLAT_SIZE;j++) {
M_d[i][j] += real_mpl(bottom[j],top_d[i]);
bottom_d[j] += real_mpl(M[i][j],top_d[i]);
}
}
}
int euclidean_loss_forward(RealType bottom[CLASS_NO],RealType *loss,int label)
{
int i,max_index;
RealType sum = real_zero,target,max_val;
RealType sdiff;
max_index = 0;
max_val = bottom[0];
for(i=1;i<CLASS_NO;i++) {
if(bottom[i] > max_val) {
max_index=i;
max_val = bottom[i];
}
}
for(i=0;i<CLASS_NO;i++) {
target = label == i ? real_one : real_zero;
sdiff = target - bottom[i];
sum += real_mpl(sdiff,sdiff);
}
*loss += real_half(sum);
return max_index == label;
}
void euclidean_loss_backward(RealType bottom[CLASS_NO],RealType diff[CLASS_NO],int label)
{
int i;
RealType target;
RealType sdiff;
for(i=0;i<CLASS_NO;i++) {
target = label == i ? real_one : real_zero;
sdiff = bottom[i] - target;
diff[i] = sdiff;
}
}
int net_forward(unsigned char *digit,int label,Params *p,Layers *l,RealType *loss)
{
conv_forward(digit,p->conv_kernel,p->conv_offset,l->conv_res);
max_pool_2x2_relu_forward(l->conv_res,l->pool_res);
ip_forward(l->pool_res,l->probs,p->ip_offset,p->ip_mat);
return euclidean_loss_forward(l->probs,loss,label);
}
void net_backward(unsigned char *digit,int label,Params *p,Params *pd,Layers *l,Layers *ld)
{
euclidean_loss_backward(l->probs,ld->probs,label);
ip_backward(l->pool_res,l->probs,p->ip_offset,p->ip_mat,
ld->pool_res,ld->probs,pd->ip_offset,pd->ip_mat);
max_pool_2x2_relu_backward(l->conv_res,l->pool_res,ld->conv_res,ld->pool_res);
conv_backward(digit,p->conv_kernel,p->conv_offset,l->conv_res,
pd->conv_kernel,pd->conv_offset,ld->conv_res);
}
int forward_backward(AllData *d,unsigned char *digit,int label,RealType *loss)
{
int r = net_forward(digit,label,&d->params,&d->blobs,loss);
net_backward(digit,label,&d->params,&d->params_diffs,&d->blobs,&d->blob_diffs);
return r;
}
#if 0
void apply_update_vfloat(float lr,float wd,float momentum)
{
const int size = sizeof(Params) / sizeof(RealType);
RealType *p=(RealType*)(&data.params);
RealType *pd=(RealType*)(&data.params_diffs);
RealType *v=(RealType*)(&data.params_vel);
int i;
float wd_fact = 1.0 - wd;
for(i=0;i<size;i++) {
float vel = to_float(v[i]) * momentum + lr * to_float(pd[i]);
p[i] = from_float(to_float(p[i]) * wd_fact - vel);
v[i]= from_float(vel);
pd[i] = real_zero;
}
}
void apply_update_fixed(RealType lr,RealType wd,RealType momentum)
{
apply_update_vfloat(to_float(lr),to_float(wd),to_float(momentum));
}
#else
void apply_update_fixed(RealType lr,RealType wd,RealType momentum)
{
const int size = sizeof(Params) / sizeof(RealType);
RealType *p=(RealType*)(&data.params);
RealType *pd=(RealType*)(&data.params_diffs);
RealType *v=(RealType*)(&data.params_vel);
int i;
RealType wd_fact = real_one - wd;
for(i=0;i<size;i++) {
int32_t vel = real_mpl_nshift(v[i],momentum) + real_mpl_nshift(lr,pd[i]);
p[i] = (real_mpl_nshift(p[i], wd_fact) - vel + FIX_ROUND) >> FIX_SHIFT;
v[i]= (vel + FIX_ROUND) >> FIX_SHIFT;
pd[i] = real_zero;
}
}
#endif
unsigned short randv()
{
static unsigned short lfsr = 0xACE1u;
unsigned short bit;
bit = ((lfsr >> 0) ^ (lfsr >> 2) ^ (lfsr >> 3) ^ (lfsr >> 5));
lfsr = (lfsr >> 1) | (bit << 15);
return lfsr;
}
#if 0
float gauus()
{
unsigned res = 0;
int i;
static float const factor = 16.0f / 65536.0;
for(i=0;i<12;i++)
res += randv() >> 4;
return factor * res - 6.0f;
}
void xavier(RealType *v,int size,int Nin,int Nout)
{
int i;
float factor = 2.0 / (Nin + Nout);
for(i=0;i<size;i++) {
v[i] = from_float(factor * gauus());
}
}
#else
RealType gauus(RealType sigma)
{
#if FIX_SHIFT != 12
#error "Does not work with other shift!"
#endif
unsigned res = 0;
int i;
for(i=0;i<12;i++)
res += randv() >> 4;
return real_mpl(res - 6 * FIX_SCALE,sigma);
}
void xavier(RealType *v,int size,int Nin,int Nout)
{
int i;
RealType sigma = FIX_SCALE * 2 / (Nin + Nout);
unsigned short cs=0;
for(i=0;i<size;i++) {
v[i] = gauus(sigma);
cs = cs ^ v[i];
}
}
#endif
void init_params(Params *p)
{
int i;
xavier(&p->ip_mat[0][0],CLASS_NO*FLAT_SIZE,FLAT_SIZE,CLASS_NO);
for(i=0;i<CLASS_NO;i++)
p->ip_offset[i]=real_zero;
xavier(&p->conv_kernel[0][0][0],KERNELS*KSIZE*KSIZE,KERNELS*KSIZE*KSIZE,KERNELS*KSIZE*KSIZE);
for(i=0;i<KERNELS;i++)
p->conv_offset[i]=real_zero;
}
#ifdef __linux
unsigned char screen[6144 + 32*24];
#else
unsigned char *screen = (void *)(16384);
#endif
const int rows_for_digit = 2;
#define ST_TRAIN 0
#define ST_OK 1
#define ST_FAIL 2
void get_character(unsigned char *chr,int r,int c)
{
unsigned char *tgt = screen;
tgt += (r % 8)*32+c + (32*8*8) * (r / 8);
for(int k=0;k<8;k++) {
*chr++ = *tgt;
tgt += 256;
}
}
void mark_character(int digit,int batch,int status)
{
int addr = digit * train_samples_size + batch;
unsigned char *mark = screen + 6144;
if(addr > 32*25) {
return;
}
mark += addr;
switch(status) {
case ST_TRAIN: *mark = (3) << 3; break;
case ST_OK: *mark = (2) << 4; break;
case ST_FAIL: *mark = (1) << 4; break;
}
}
unsigned char sample[8];
RealType blr = FIX_SCALE / 100; // 0.01f
RealType train(int epoch)
{
if(epoch == 0) {
init_params(&data.params);
}
int acc = 0;
for(int sample_id=0;sample_id < DATA_SIZE;sample_id++) {
RealType loss=real_zero;
for(int i=0;i<CLASS_NO;i++) {
get_character(sample,i*rows_for_digit + sample_id / 32,sample_id % 32);
mark_character(i,sample_id,ST_TRAIN);
int cur_ac = forward_backward(&data,sample,i,&loss);
if(cur_ac == 0)
mark_character(i,sample_id,ST_FAIL);
else
mark_character(i,sample_id,ST_OK);
acc += cur_ac;
}
if(epoch==2 && sample_id == 0) {
blr /= 10;
}
if(sample_id % ITER_SIZE == (ITER_SIZE-1)) {
// momentum = 0.9, wd = 0.0005
apply_update_fixed(blr,(short)(FIX_SCALE * 5l / 10000),(short)(FIX_SCALE * 9l / 10));
}
}
return ((int32_t)acc * FIX_SCALE / (train_samples_size * CLASS_NO));
}
RealType test()
{
int N=0;
int acc=0;
for(int b=0;b<DATA_SIZE;b++) {
RealType loss=real_zero;
for(int i=0;i<CLASS_NO;i++) {
int sample_id = b;
get_character(sample,i*rows_for_digit + sample_id / 32,sample_id % 32);
mark_character(i,sample_id,ST_TRAIN);
int cur_ac = net_forward(sample,i,&data.params,&data.blobs,&loss);
if(cur_ac == 0)
mark_character(i,sample_id,ST_FAIL);
else
mark_character(i,sample_id,ST_OK);
acc += cur_ac;
N++;
}
}
return ((int32_t)acc * FIX_SCALE / (train_samples_size * CLASS_NO));
}
#ifdef __linux
void print_character(unsigned char *chr,int r,int c)
{
unsigned char *tgt = screen;
tgt += (r % 8)*32+c + (32*8*8) * (r / 8);
for(int k=0;k<8;k++) {
*tgt = *chr++;
tgt += 256;
}
}
void make_screen(unsigned char samples[10][sizeof(train_samples) / 10 / 8][8])
{
memset(screen,0,6144);
memset(screen+6144,56,32*24);
for(int b=0;b<train_samples_size;b++) {
for(int c=0;c<10;c++) {
print_character(samples[c][b],c*rows_for_digit + b / 32,b % 32);
}
}
}
#endif
#ifdef __linux
int main()
{
printf("Data Size = %d float_size=%d\n",(int)sizeof(AllData),(int)sizeof(RealType));
make_screen(train_samples);
for(int e=0;e<EPOCHS;e++) {
RealType acc = train(e);
printf("Epoch=%d, accuracy = %3.1f%%\n",e,100*to_float(acc));
}
make_screen(test_samples);
RealType acc = test();
printf("Test accuracy = %3.1f%%\n",100*to_float(acc));
return 0;
}
#else
int main()
{
enable_timer();
unsigned char *statep = (void*)(25599);
int epoch = *statep;
RealType acc;
if(epoch < 255) {
acc = train(epoch);
}
else {
acc = test();
}
return acc;
}
#endif