-
Notifications
You must be signed in to change notification settings - Fork 0
/
AttendenceProject.py
255 lines (201 loc) · 8.07 KB
/
AttendenceProject.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import argparse
import os
import time
from datetime import datetime
import cv2
import face_recognition
import numpy as np
from imutils.video import VideoStream
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.image import img_to_array
import sounddevice
from scipy.io.wavfile import write
path="ImageAttendence"
images = []
classNames = []
myList = os.listdir(path)
print(myList)
def atend():
for cl in myList:
curImg = cv2.imread('{path}/{cl}')
images.append(curImg)
classNames.append(os.path.splitext(cl)[0])
print(classNames)
def findEncoding(images):
encodeList = []
for img in images:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
encode = face_recognition.face_encodings(img)[0]
encodeList.append(encode)
return encodeList
def markAttendence(name):
with open('Attendence.csv', 'r+') as f:
myDataList = f.readlines()
nameList = []
for line in myDataList:
entry = line.split(',')
nameList.append(entry[0])
if name not in nameList:
now = datetime.now()
dtString = now.strftime("%H:%M:%S")
dateString = now.date()
f.writelines('\n{name},{dtString},{dateString}')
# tToSp()
encodeListKnown = findEncoding(images)
print('Encoding Complete')
cap = cv2.VideoCapture(0)
while True:
success, img = cap.read()
imgS = cv2.resize(img, (0, 0), None, 0.25, 0.25)
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
facesCurFrame = face_recognition.face_locations(imgS)
encodesCurFrame = face_recognition.face_encodings(imgS, facesCurFrame)
for encodeFace, faceLoc in zip(encodesCurFrame, facesCurFrame):
matches = face_recognition.compare_faces(encodeListKnown, encodeFace)
faceDis = face_recognition.face_distance(encodeListKnown, encodeFace)
# print(faceDis)
matchIndex = np.argmin(faceDis)
if matches[matchIndex]:
name = classNames[matchIndex].upper()
# print(name)
y1, x2, y2, x1 = faceLoc
y1, x2, y2, x1 = y1 * 4, x2 * 4, y2 * 4, x1 * 4
cv2.rectangle(img, (x1, y2 - 35), (x2, y2), (0, 255, 0), cv2.FILLED)
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(img, name, (x1 + 6, y2 - 6), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 0), 2)
markAttendence(name)
cv2.imshow('Webcam', img)
key = cv2.waitKey(1) & 0xFF
if key == ord("q"):
break
# return
cv2.destroyAllWindows()
cap.stop()
def dec2():
def detect_and_predict_mask(frame, faceNet, maskNet):
(h, w) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(frame, 1.0, (300, 300),
(104.0, 177.0, 123.0))
faceNet.setInput(blob)
detections = faceNet.forward()
faces = []
locs = []
preds = []
for i in range(0, detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > args["confidence"]:
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
(startX, startY) = (max(0, startX), max(0, startY))
(endX, endY) = (min(w - 1, endX), min(h - 1, endY))
face = frame[startY:endY, startX:endX]
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
face = cv2.resize(face, (224, 224))
face = img_to_array(face)
face = np.expand_dims(face, axis=0)
faces.append(face)
locs.append((startX, startY, endX, endY))
if len(faces) > 0:
preds = maskNet.predict(faces)
return (locs, preds)
ap = argparse.ArgumentParser()
ap.add_argument("-f", "--face", type=str, default="face_detector")
ap.add_argument("-m", "--model", type=str, default="mask_detector.model")
ap.add_argument("-c", "--confidence", type=float, default=0.5)
args = vars(ap.parse_args())
print("Loading FaceDetector...................")
prototxtPath = os.path.sep.join([args["face"], "deploy.prototxt"])
weightsPath = os.path.sep.join([args["face"], "res10_300x300_ssd_iter_140000.caffemodel"])
faceNet = cv2.dnn.readNet(prototxtPath, weightsPath)
print("Loading FaceMask Detector...........")
maskNet = load_model(args["model"])
print("Starting Video Stream")
vs = VideoStream(src=0).start()
time.sleep(2.0)
while True:
frame = vs.read()
# frame = imutils.resize(frame, width=)
(locs, preds) = detect_and_predict_mask(frame, faceNet, maskNet)
for (box, pred) in zip(locs, preds):
(startX, startY, endX, endY) = box
(mask, withoutMask) = pred
label = "Mask" if mask > withoutMask else "No Mask"
color = (0, 255, 0) if label == "Mask" else (0, 0, 255)
if label=="Mask":
# print("Mask")
# cv2.destroyAllWindows()
vs.stop()
atend()
# cv2.destroyWindow('frame')
# break
# elif label=="No Mask":
# # print("No")
# label = "{}: {:.2f}%".format(label, max(mask,withoutMask)* 100 )
cv2.putText(frame, label, (startX, startY - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2)
cv2.rectangle(frame, (startY, startY), (endX, endY), color, 2)
cv2.imshow("frame", frame)
key = cv2.waitKey(1) & 0xFF
if key == ord("q"):
break
cv2.destroyAllWindows()
vs.stop()
def takeSS():
key = cv2.waitKey(1)
webcam = cv2.VideoCapture(0)
i = 0
while True:
i += 1
try:
check, frame = webcam.read()
print(check) # prints true as long as the webcam is running
print(frame) # prints matrix values of each framecd
cv2.imshow("Capturing", frame)
key = cv2.waitKey(1)
if key == ord('s'):
x = str(i)
cv2.imwrite(filename="SSIMAGES/" + x + "saved_img.jpg", img=frame)
webcam.release()
img_new = cv2.imread(x + "saved_img.jpg", cv2.IMREAD_GRAYSCALE)
# img_new = cv2.imshow("Captured Image", img_new)
cv2.waitKey(1650)
cv2.destroyAllWindows()
print("Processing image...")
img_ = cv2.imread(x + "saved_img.jpg", cv2.IMREAD_ANYCOLOR)
print("Converting RGB image to grayscale...")
# gray = cv2.cvtColor(img_, cv2.COLOR_BGR2GRAY)
print("Converted RGB image to grayscale...")
# img_resized = cv2.imwrite(filename='saved_img-final.jpg', img=gray)
print("Image saved!")
webcam.release()
print("Camera off.")
print("Program ended.")
cv2.destroyAllWindows()
break
elif key == ord('q'):
print("Turning off camera.")
webcam.release()
print("Camera off.")
print("Program ended.")
cv2.destroyAllWindows()
break
except(KeyboardInterrupt):
print("Turning off camera.")
webcam.release()
print("Camera off.")
print("Program ended.")
cv2.destroyAllWindows()
break
def record():
pass
fs = 44100
print("Enter the Lecture duration (in seconds) - ")
second = int(input())
print("Recording ........ ")
record_voice = sounddevice.rec(int(second * fs), samplerate=fs, channels=1)
sounddevice.wait()
print("Enter the name of the subject - ")
name = input()
print("Enter the lecture number (integer) - ")
no = int(input())
name = name + str(no)
write("RECORD/" + name + ".wav", fs, record_voice)