-
Notifications
You must be signed in to change notification settings - Fork 0
/
detect_maskInVideo.py
98 lines (73 loc) · 3.27 KB
/
detect_maskInVideo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.models import load_model
from imutils.video import VideoStream
import numpy as np
import argparse
import imutils
import time
import cv2
import os
def dec2():
def detect_and_predict_mask(frame, faceNet, maskNet):
(h, w) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(frame, 1.0, (300, 300),
(104.0, 177.0, 123.0))
faceNet.setInput(blob)
detections = faceNet.forward()
faces = []
locs = []
preds = []
for i in range(0, detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > args["confidence"]:
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
(startX, startY) = (max(0, startX), max(0, startY))
(endX, endY) = (min(w - 1, endX), min(h - 1, endY))
face = frame[startY:endY, startX:endX]
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
face = cv2.resize(face, (224, 224))
face = img_to_array(face)
face = np.expand_dims(face, axis=0)
faces.append(face)
locs.append((startX, startY, endX, endY))
if len(faces) > 0:
preds = maskNet.predict(faces)
return (locs, preds)
ap = argparse.ArgumentParser()
ap.add_argument("-f", "--face", type=str, default="face_detector")
ap.add_argument("-m", "--model", type=str, default="mask_detector.model")
ap.add_argument("-c", "--confidence", type=float, default=0.5)
args = vars(ap.parse_args())
print("Loading FaceDetector...................")
prototxtPath = os.path.sep.join([args["face"], "deploy.prototxt"])
weightsPath = os.path.sep.join([args["face"], "res10_300x300_ssd_iter_140000.caffemodel"])
faceNet = cv2.dnn.readNet(prototxtPath, weightsPath)
print("Loading FaceMask Detector...........")
maskNet = load_model(args["model"])
print("Starting Video Stream")
vs = VideoStream(src=0).start()
time.sleep(2.0)
while True:
frame = vs.read()
# frame = imutils.resize(frame, width=)
(locs, preds) = detect_and_predict_mask(frame, faceNet, maskNet)
for (box, pred) in zip(locs, preds):
(startX, startY, endX, endY) = box
(mask, withoutMask) = pred
label = "Mask" if mask > withoutMask else "No Mask"
color = (0, 255, 0) if label == "Mask" else (0, 0, 255)
if label=="Mask":
print("Mask")
elif label=="No Mask":
print("No")
# label = "{}: {:.2f}%".format(label, max(mask,withoutMask)* 100 )
cv2.putText(frame, label, (startX, startY - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2)
cv2.rectangle(frame, (startY, startY), (endX, endY), color, 2)
cv2.imshow("frame", frame)
key = cv2.waitKey(1) & 0xFF
if key == ord("q"):
break
cv2.destroyAllWindows()
vs.stop()