-
Notifications
You must be signed in to change notification settings - Fork 9
/
predict.py
563 lines (446 loc) · 23.5 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
import argparse
import cv2
import numpy as np
import yaml
import random
from typing import Type
import preprocessing.face_detector as face_detector
from preprocessing.face_detector import VideoDataset, VideoFaceDetector
from torch.utils.data.dataloader import DataLoader
from PIL import Image
import torch
from preprocessing.utils import preprocess_images, _generate_connected_components
from facenet_pytorch import InceptionResnetV1, fixed_image_standardization
from statistics import mean
from albumentations import Compose, RandomBrightnessContrast, HorizontalFlip, FancyPCA, HueSaturationValue, OneOf, ToGray, ShiftScaleRotate, ImageCompression, PadIfNeeded, GaussNoise, GaussianBlur, Rotate, Normalize, Resize
from transforms.albu import IsotropicResize
from models.size_invariant_timesformer import SizeInvariantTimeSformer
from models.efficientnet.efficientnet_pytorch import EfficientNet
from models.baseline import Baseline
import os
from einops import rearrange
from utils import aggregate_attentions, draw_border, save_attention_plots
from models.xception import xception
RANGE_SIZE = 5
SIZE_EMB_DICT = [(1+i*RANGE_SIZE, (i+1)*RANGE_SIZE) if i != 0 else (0, RANGE_SIZE) for i in range(20)]
def detect_faces(video_path, detector_cls: Type[VideoFaceDetector], opt):
# Init the face detector
detector = face_detector.__dict__[detector_cls](device=opt.gpu_id)
# Read the video and its information
dataset = VideoDataset([video_path])
loader = DataLoader(dataset, shuffle=False, num_workers=opt.workers, batch_size=1, collate_fn=lambda x: x)
# Detect the faces
for item in loader:
bboxes = {}
video, indices, fps, frames = item[0]
bboxes.update({i : b for i, b in zip(indices, detector._detect_faces(frames))})
found_faces = False
for key in bboxes:
if type(bboxes[key]) == list:
found_faces = True
break
if not found_faces:
raise Exception("No faces found.")
return bboxes
def extract_crops(video_path, bboxes_dict):
# Read video frames
frames = []
capture = cv2.VideoCapture(video_path)
frames_num = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
fps = int(capture.get(5))
for i in range(frames_num):
capture.grab()
success, frame = capture.retrieve()
if not success:
continue
frames.append(frame)
# Extract the faces crops
explored_indexes = []
crops = []
for i in range(0, len(frames), fps):
while str(i) not in bboxes_dict:
if i == frames_num - 1:
i -= 1
if i in explored_indexes:
break
else:
explored_indexes.append(i)
frame = frames[i]
index = i
limit = i + fps - 1
keys = [int(x) for x in list(bboxes_dict.keys())]
while index < limit:
index += 1
if index in keys and bboxes_dict[index] is not None:
break
if index == limit:
continue
bboxes = bboxes_dict[index]
for bbox in bboxes:
xmin, ymin, xmax, ymax = [int(b * 2) for b in bbox]
w = xmax - xmin
h = ymax - ymin
# Add some padding to catch background too
p_h = h // 3
p_w = w // 3
crop_h = (ymax + p_h) - max(ymin - p_h, 0)
crop_w = (xmax + p_w) - max(xmin - p_w, 0)
# Make the image square
if crop_h > crop_w:
p_h -= int(((crop_h - crop_w)/2))
else:
p_w -= int(((crop_w - crop_h)/2))
# Extract the face from the frame
crop = frame[max(ymin - p_h, 0):ymax + p_h, max(xmin - p_w, 0):xmax + p_w]
# Check if out of bound and correct
h, w = crop.shape[:2]
if h > w:
diff = int((h - w)/2)
if diff > 0:
crop = crop[diff:-diff,:]
else:
crop = crop[1:,:]
elif h < w:
diff = int((w - h)/2)
if diff > 0:
crop = crop[:,diff:-diff]
else:
crop = crop[:,:-1]
# Add the extracted face to the list
crops.append((i, Image.fromarray(crop), bbox))
return crops
def cluster_faces(crops, valid_cluster_size_ratio = 0.20, similarity_threshold = 0.45):
# Convert crops to PIL images
crops_images = [row[1] for row in crops]
# Extract the embeddings
embeddings_extractor = InceptionResnetV1(pretrained='vggface2').eval().to(device)
faces = [preprocess_images(face) for face in crops_images]
faces = np.stack([np.uint8(face) for face in faces])
faces = torch.as_tensor(faces)
faces = faces.permute(0, 3, 1, 2).float()
faces = fixed_image_standardization(faces)
face_recognition_input = faces.cuda()
embeddings = []
embeddings = embeddings_extractor(face_recognition_input).detach().cpu().numpy()
# Clustering
valid_cluster_size = int(len(faces) * valid_cluster_size_ratio)
similarities = np.dot(np.array(embeddings), np.array(embeddings).T)
components = _generate_connected_components(
similarities, similarity_threshold=similarity_threshold
)
components = [sorted(component) for component in components]
clustered_faces = {}
for identity_index, component in enumerate(components):
for index, face_index in enumerate(component):
component[index] = crops[face_index]
clustered_faces[identity_index] = component
return clustered_faces
def get_identity_information(identity, faces):
mean_side = mean([row[1].size[0] for row in faces])
number_of_faces = len(faces)
return [identity, mean_side, number_of_faces, faces]
def get_sorted_identities(identities, discarded_faces, max_identities = 2, num_frames = 16):
sorted_identities = []
discarded_faces = []
for identity in identities:
sorted_identities.append(get_identity_information(identity, identities[identity]))
'''
# If no faces have been found, use the discarded faces
if len(sorted_identities) == 0:
sorted_identities.append(self.get_identity_information(identities))
discarded_faces = []
'''
# Sort identities based on faces size
sorted_identities = sorted(sorted_identities, key=lambda x:x[1], reverse=True)
if len(sorted_identities) > max_identities:
sorted_identities = sorted_identities[:max_identities]
# Adjust the identities list faces number
identities_number = len(sorted_identities)
available_additional_faces = []
if identities_number > 1:
max_faces_per_identity = {1: [num_frames],
2: [int(num_frames/2), int(num_frames/2)],
3: [int(num_frames/3), int(num_frames/3), int(num_frames/4)],
4: [int(num_frames/3), int(num_frames/3), int(num_frames/8), int(num_frames/8)]}
max_faces_per_identity = max_faces_per_identity[identities_number]
for i in range(identities_number):
if sorted_identities[i][2] < max_faces_per_identity[i] and i < identities_number - 1:
sorted_identities[i+1][2] += max_faces_per_identity[i] - sorted_identities[i][2]
available_additional_faces.append(0)
elif sorted_identities[i][2] > max_faces_per_identity[i]:
available_additional_faces.append(sorted_identities[i][2] - max_faces_per_identity[i])
sorted_identities[i][2] = max_faces_per_identity[i]
else:
available_additional_faces.append(0)
else: # If only one identity is in the video, all the frames are assigned to this identity
sorted_identities[0][2] = num_frames
available_additional_faces.append(0)
# Check if we found enough faces to fullfill the input sequence, otherwise go back and add some faces from previous identities
input_sequence_length = sum(faces_number for _, _, faces_number, _ in sorted_identities)
if input_sequence_length < num_frames:
for i in range(identities_number):
needed_faces = num_frames - input_sequence_length
if available_additional_faces[i] > 0:
added_faces = min(available_additional_faces[i], needed_faces)
sorted_identities[i][2] += added_faces
input_sequence_length += added_faces
if input_sequence_length == num_frames:
break
# If not enough faces have been found, add some "dummy" images in the last identity
if input_sequence_length < num_frames:
needed_faces = num_frames - input_sequence_length
sorted_identities[-1][2] += needed_faces
input_sequence_length += needed_faces
return sorted_identities, discarded_faces
def create_val_transform(size, additional_targets):
return Compose([
IsotropicResize(max_side=size, interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_CUBIC),
PadIfNeeded(min_height=size, min_width=size, border_mode=cv2.BORDER_CONSTANT),
Resize(height=size, width=size)
], additional_targets = additional_targets
)
def generate_masks(video_path, identities, discarded_faces, num_frames, image_size, num_patches):
mask = []
last_range_end = 0
sequence = []
size_embeddings = []
images_frames = []
for identity_index, identity in enumerate(identities):
max_faces = identity[2]
identity_images = identity[3]
'''
# If no faces were considered for a frame during clustering, probably it is inside the discarded faces
if identity_index == 0 and len(discarded_faces) > 0:
frames = [int(os.path.basename(image_path).split("_")[0]) for image_path in identity_faces]
discarded_frames = [int(os.path.basename(image_path).split("_")[0]) for image_path in discarded_faces]
missing_frames = list(set(discarded_frames) - set(frames))
missing_faces = [discarded_faces[discarded_frames.index(missing_frame)] for missing_frame in missing_frames]
if len(missing_faces) > 0:
identity_faces = identity_faces + missing_faces # Add the missing faces to the identity
'''
# Select uniformly the frames in an alternate way
if len(identity_images) > max_faces:
idx = np.round(np.linspace(0, len(identity_images) - 2, max_faces)).astype(int)
identity_images = np.asarray(identity_images)[idx]
images_frames.extend(identity_image[0] for identity_image in identity_images)
identity_images = [identity_image[1] for identity_image in identity_images]
# Generate size embeddings
capture = cv2.VideoCapture(video_path)
width = capture.get(3)
height = capture.get(4)
video_area = width*height/2
identity_size_embeddings = []
for image_index, image in enumerate(identity_images):
# Get face-frame area ratio for size embedding
face_area = image.size[0] * image.size[1]
ratio = int(face_area * 100 / video_area)
side_ranges = list(map(lambda a_: ratio in range(a_[0], a_[1] + 1), SIZE_EMB_DICT))
identity_size_embeddings.append(np.where(side_ranges)[0][0]+1)
# If the readed faces are less than max_faces we need to add empty images and generate the mask
if len(identity_images) < max_faces:
diff = max_faces - len(identity_size_embeddings)
identity_size_embeddings = np.concatenate((identity_size_embeddings, np.zeros(diff)))
identity_images.extend([np.zeros((image_size, image_size, 3), dtype=np.uint8) for i in range(diff)])
mask.extend([1 if i < max_faces - diff else 0 for i in range(max_faces)])
images_frames.extend([max(images_frames) for i in range(diff)])
else: # Otherwise all the faces are valid
mask.extend([1 for i in range(max_faces)])
# Compose the size_embedding and sequence list
size_embeddings.extend(identity_size_embeddings)
sequence.extend(identity_images)
# Transform the images, the same transformation is applied to all the faces in the same video
sequence = [np.asarray(image) for image in sequence]
additional_targets_keys = ["image" + str(i) for i in range(num_frames)]
additional_targets_values = ["image" for i in range(num_frames)]
additional_targets = dict(zip(additional_targets_keys, additional_targets_values))
transform = create_val_transform(image_size, additional_targets)
if len(sequence) == 8:
transformed_images = transform(image=sequence[0], image1=sequence[1], image2=sequence[2], image3=sequence[3], image4=sequence[4], image5=sequence[5], image6=sequence[6], image7=sequence[7])
elif len(sequence) == 16:
transformed_images = transform(image=sequence[0], image1=sequence[1], image2=sequence[2], image3=sequence[3], image4=sequence[4], image5=sequence[5], image6=sequence[6], image7=sequence[7], image8=sequence[8], image9=sequence[9], image10=sequence[10], image11=sequence[11], image12=sequence[12], image13=sequence[13], image14=sequence[14], image15=sequence[15])
else:
raise Exception("Invalid number of frames.")
sequence = [transformed_images[key] for key in transformed_images]
# Generate the identities_mask telling to the model which faces attend to an identity and which to another one
identities_mask = []
last_range_end = 0
for identity_index in range(len(identities)):
identity_mask = [True if i >= last_range_end and i < last_range_end + identities[identity_index][2] else False for i in range(0, num_frames)]
for k in range(identities[identity_index][2]):
identities_mask.append(identity_mask)
last_range_end += identities[identity_index][2]
# Generate coherent temporal-positional embedding
images_frames_positions = {k: v+1 for v, k in enumerate(sorted(set(images_frames)))}
frame_positions = [images_frames_positions[frame] for frame in images_frames]
if num_patches != None:
positions = [[i+1 for i in range(((frame_position-1)*num_patches), num_patches*(frame_position))] for frame_position in frame_positions]
positions = sum(positions, []) # Merge the lists
positions.insert(0,0) # Add CLS
else:
positions = []
tokens_per_identity = [(identities[i][0], identities[i][2]*num_patches + identities[i-1][2]*num_patches) if i > 0 else (identities[i][0], identities[i][2]*num_patches) for i in range(len(identities))]
return torch.tensor([sequence]).float(), torch.tensor([size_embeddings]).int(), torch.tensor([mask]).bool(), torch.tensor([identities_mask]).bool(), torch.tensor([positions]), tokens_per_identity
def predict(video_path, clustered_faces, config, opt, discarded_faces = None):
# Load required weights for feature extractor
if opt.extractor_model == 0: # EfficientNet-B0
if opt.extractor_weights.lower() == 'imagenet':
features_extractor = EfficientNet.from_pretrained('efficientnet-b0')
else:
features_extractor = EfficientNet.from_name('efficientnet-b0')
features_extractor.load_matching_state_dict(torch.load(opt.extractor_weights, map_location=torch.device('cpu')))
print("Custom features extractor weights loaded.")
else: # XceptionNet
if opt.extractor_weights.lower() == 'pretrained':
features_extractor = xception(num_classes=1, pretrain_path="weights/ckpt_iter.pth.tar")
else:
features_extractor = xception(num_classes=1, pretrain_path=opt.extractor_weights)
# Init the model
model = SizeInvariantTimeSformer(config=config, require_attention=True)
num_patches = config['model']['num-patches']
features_extractor = torch.nn.DataParallel(features_extractor)
model = torch.nn.DataParallel(model)
# Move into GPU
features_extractor = features_extractor.to(device)
model = model.to(device)
features_extractor.eval()
model.eval()
if os.path.exists(opt.model_weights):
model.load_state_dict(torch.load(opt.model_weights))
else:
raise Exception("No checkpoint loaded for the model.")
identities, discarded_faces = get_sorted_identities(clustered_faces, discarded_faces)
videos, size_embeddings, mask, identities_mask, positions, tokens_per_identity = generate_masks(video_path, identities, discarded_faces, config["model"]["num-frames"], config["model"]["image-size"], config["model"]["num-patches"])
b, f, h, w, c = videos.shape
videos = videos.to(device)
identities_mask = identities_mask.to(device)
mask = mask.to(device)
positions = positions.to(device)
with torch.no_grad():
video = rearrange(videos, "b f h w c -> (b f) c h w")
features = features_extractor(video)
features = rearrange(features, '(b f) c h w -> b f c h w', b = b, f = f)
test_pred, attentions = model(features, mask=mask, size_embedding=size_embeddings, identities_mask=identities_mask, positions=positions)
identity_names = [row[0] for row in tokens_per_identity]
frames_per_identity = [int(row[1] / config["model"]["num-patches"]) for row in tokens_per_identity]
if opt.save_attentions:
aggregated_attentions, identity_attentions = aggregate_attentions(attentions, config['model']['heads'], config['model']['num-frames'], frames_per_identity)
save_attention_plots(aggregated_attentions, identity_names, frames_per_identity, config['model']['num-frames'], os.path.basename(video_path))
else:
identity_attentions = []
aggregated_attentions = []
return torch.sigmoid(test_pred[0]).item(), identity_attentions, aggregated_attentions, identities, frames_per_identity
def get_identities_bboxes(identities):
identities_bboxes = {}
for row in identities:
identity = row[3]
for face in identity:
frame = face[0]
if frame in identities_bboxes:
identities_bboxes[frame].append(face[2])
else:
identities_bboxes[frame] = [face[2]]
return identities_bboxes
def generate_output_video(video_path, pred, identity_attentions, aggregated_attentions, identities, frames_per_identity):
identities_bboxes = get_identities_bboxes(identities)
available_frames_keys = [frame for frame in identities_bboxes]
cap = cv2.VideoCapture(video_path)
width = cap.get(3)
height = cap.get(4)
fps = int(cap.get(5))
fourcc = hex(int(cap.get(cv2.CAP_PROP_FOURCC)))
output = cv2.VideoWriter("examples/preds/"+str(os.path.basename(video_path).replace(".mp4", ".avi")), cv2.VideoWriter_fourcc("X", "V", "I", "D"), fps, (int(width), int(height)))
frame_index = 0
while True:
ret, frame = cap.read()
if ret:
nearest_frame_index = min(available_frames_keys, key=lambda x:abs(x - frame_index))
if nearest_frame_index - frame_index > fps:
continue
bbox = identities_bboxes[nearest_frame_index]
for identity_index, identity_bbox in enumerate(bbox):
xmin, ymin, xmax, ymax = [int(b * 2) for b in identity_bbox]
if pred > 0.5:
red = 255 * identity_attentions[identity_index]
green = 255 - red
if red > green:
text = 'Fake ' + str(round(pred*100,2)) + "%"
else:
text = 'Pristine'
else:
green = int(255 * (1 - pred))
red = 255 - green
text = 'Pristine ' + str(round((1-pred)*100,2)) + "%"
color = (0, green, red)
frame = draw_border(frame, (xmin,ymin), (xmax,ymax), color, 2, 10, 20)
cv2.putText(frame, text, (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, color, 2)
output.write(frame)
else:
break
frame_index += 1
output.release()
cap.release()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--video_path', type=str,
help='Path to the video file')
parser.add_argument("--detector_type", help="type of the detector", default="FacenetDetector",
choices=["FacenetDetector"])
parser.add_argument('--random_state', default=42, type=int,
help='Random state value')
parser.add_argument('--gpu_id', default=0, type=int,
help='ID of GPU to be used')
parser.add_argument('--workers', default=1, type=int,
help='Number of data loader workers.')
parser.add_argument('--config', type=str,
help="Which configuration to use. See into 'config' folder.")
parser.add_argument('--model_weights', type=str,
help='Model weights.')
parser.add_argument('--extractor_model', type=int, default=0,
help="Which model use for features extraction (0: EfficientNet; 1: XceptionNet).")
parser.add_argument('--extractor_weights', default='ImageNet', type=str,
help='Path to extractor weights or "imagenet".')
parser.add_argument('--output_type', default=0, type=int,
help='Specify which type of output is requested (0: Prediction; 1: Video)".')
parser.add_argument('--save_attentions', default=False, action="store_true",
help='Save attentions plots.')
opt = parser.parse_args()
print(opt)
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
with open(opt.config, 'r') as ymlfile:
config = yaml.safe_load(ymlfile)
# Check for integrity
if config['model']['num-frames'] != 8 and config['model']['num-frames'] != 16:
raise Exception("Invalid number of frames.")
if not os.path.exists(opt.video_path):
raise Exception("Invalid video path.")
# Setup CUDA settings
torch.cuda.set_device(opt.gpu_id)
torch.backends.cudnn.deterministic = True
random.seed(opt.random_state)
torch.manual_seed(opt.random_state)
torch.cuda.manual_seed(opt.random_state)
np.random.seed(opt.random_state)
print("Detecting faces...")
bboxes_dict = detect_faces(opt.video_path, opt.detector_type, opt)
print("Face detection completed.")
print("Cropping faces from the video...")
crops = extract_crops(opt.video_path, bboxes_dict)
print("Faces cropping completed.")
'''
for j, crop in enumerate(crops):
cv2.imwrite("outputs/faces/face_{}.png".format(j), np.asarray(crop[1]))
'''
print("Clustering faces...")
clustered_faces = cluster_faces(crops)
print("Faces clustering completed.")
print("Searching for fakes in the video...")
pred, identity_attentions, aggregated_attentions, identities, frames_per_identity = predict(opt.video_path, clustered_faces, config, opt)
if pred > 0.5:
print("The video is fake ("+str(round(pred*100,2)) + "%), showing video result...")
else:
print("The video is pristine ("+str(round((1-pred)*100,2)) + "%), showing video result...")
if opt.output_type == 0:
print("Prediction", pred)
else:
generate_output_video(opt.video_path, pred, identity_attentions, aggregated_attentions, identities, frames_per_identity)