Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

i use ESP32-2432S028 : #2

Open
1achy opened this issue May 12, 2024 · 2 comments
Open

i use ESP32-2432S028 : #2

1achy opened this issue May 12, 2024 · 2 comments

Comments

@1achy
Copy link

1achy commented May 12, 2024

SPI
Two separate SPI busses are being used for the display and the touchscreen.

spi:

  • id: lcd
    clk_pin: GPIO14
    mosi_pin: GPIO13
    miso_pin: GPIO12
  • id: touch
    clk_pin: GPIO25
    mosi_pin: GPIO32
    miso_pin: GPIO39

https://macsbug.wordpress.com/2022/08/17/esp32-2432s028/

LIbrary Lovyan GFX 使用により多くの事が容易にできます。
日本語Fontは 綺麗で簡単に使用できます。
 
Lovyan GFX 設定:
 Display:ILI9341 :SPI2 HOST:SPI2_HOST
 cfg.freq_write : Max 40MHz
 Touch:XPT2046:SPI3 HOST:VSPI_HOST
 Touch:cfg.pin_int = 36; Touchが動作しない場合は -1 にします。

/```
/----------------------------------------------------------------------
// https://github.com/lovyan03/LovyanGFX/blob/master/examples/HowToUse/2_user_setting/2_user_setting.ino
class LGFX : public lgfx::LGFX_Device{
lgfx::Panel_ILI9341 _panel_instance;
lgfx::Bus_SPI _bus_instance;
lgfx::Light_PWM _light_instance;
lgfx::Touch_XPT2046 _touch_instance;
//----------------------------------------------------------------------
public:LGFX(void){
{ // バス制御の設定を行います。
auto cfg = _bus_instance.config();// バス設定用の構造体を取得します。
// SPIバスの設定
cfg.spi_host = SPI2_HOST; // 使用するSPIを選択 (VSPI_HOST or HSPI_HOST)
cfg.spi_mode = 0; // SPI通信モードを設定 (0 ~ 3)
cfg.freq_write = 40000000; // 送信時のSPIクロック(最大80MHz,80MHzを整数割値に丸め)
cfg.freq_read = 16000000; // 受信時のSPIクロック
cfg.spi_3wire = false; // 受信をMOSIピンで行う場合はtrueを設定
cfg.use_lock = true; // トランザクションロックを使用する場合はtrueを設定
cfg.dma_channel= 1; // 使用DMAチャンネル設定(1or2,0=disable)(0=DMA不使用)
cfg.pin_sclk = 14; // SPIのSCLKピン番号を設定 SCK
cfg.pin_mosi = 13; // SPIのMOSIピン番号を設定 SDI
cfg.pin_miso = 12; // SPIのMISOピン番号を設定 (-1 = disable) SDO
cfg.pin_dc = 2; // SPIのD/C ピン番号を設定 (-1 = disable) RS
// SDカードと共通のSPIバスを使う場合、MISOは省略せず必ず設定してください。
_bus_instance.config(cfg); // 設定値をバスに反映します。
_panel_instance.setBus(&_bus_instance);// バスをパネルにセットします。
}
{ // 表示パネル制御の設定を行います。
auto cfg = _panel_instance.config();// 表示パネル設定用の構造体を取得します。
cfg.pin_cs = 15; // CS が接続されているピン番号(-1 = disable)
cfg.pin_rst = -1; // RST が接続されているピン番号(-1 = disable)
cfg.pin_busy = -1; // BUSYが接続されているピン番号(-1 = disable)
cfg.memory_width = 240; // ドライバICがサポートしている最大の幅
cfg.memory_height = 320; // ドライバICがサポートしている最大の高さ
cfg.panel_width = 240; // 実際に表示可能な幅
cfg.panel_height = 320; // 実際に表示可能な高さ
cfg.offset_x = 0; // パネルのX方向オフセット量
cfg.offset_y = 0; // パネルのY方向オフセット量
cfg.offset_rotation = 0; // 回転方向の値のオフセット 07 (47は上下反転)
cfg.dummy_read_pixel= 8; // ピクセル読出し前のダミーリードのビット数
cfg.dummy_read_bits = 1; // ピクセル外のデータ読出し前のダミーリードのビット数
cfg.readable = true; // データ読出しが可能な場合 trueに設定
cfg.invert = false; // パネルの明暗が反転場合 trueに設定
cfg.rgb_order = false; // パネルの赤と青が入れ替わる場合 trueに設定 ok
cfg.dlen_16bit = false; // データ長16bit単位で送信するパネル trueに設定
cfg.bus_shared = false; // SDカードとバスを共有 trueに設定
_panel_instance.config(cfg);
}
{ // バックライト制御の設定を行います。(必要なければ削除)
auto cfg = _light_instance.config();// バックライト設定用の構造体を取得します。
cfg.pin_bl = 21; // バックライトが接続されているピン番号 BL
cfg.invert = false; // バックライトの輝度を反転させる場合 true
cfg.freq = 44100; // バックライトのPWM周波数
cfg.pwm_channel = 7; // 使用するPWMのチャンネル番号
_light_instance.config(cfg);
_panel_instance.setLight(&_light_instance);//バックライトをパネルにセットします。
}
{ // タッチスクリーン制御の設定を行います。(必要なければ削除)
auto cfg = _touch_instance.config();
cfg.x_min = 300; // タッチスクリーンから得られる最小のX値(生の値)
cfg.x_max = 3900; // タッチスクリーンから得られる最大のX値(生の値)
cfg.y_min = 200; // タッチスクリーンから得られる最小のY値(生の値)
cfg.y_max = 3700; // タッチスクリーンから得られる最大のY値(生の値)
cfg.pin_int = -1; // INTが接続されているピン番号, TP IRQ 36
cfg.bus_shared = false; // 画面と共通のバスを使用している場合 trueを設定
cfg.offset_rotation = 6; // 表示とタッチの向きのが一致しない場合の調整 0~7の値で設定
// SPI接続の場合
cfg.spi_host = VSPI_HOST;// 使用するSPIを選択 (HSPI_HOST or VSPI_HOST)
cfg.freq = 1000000; // SPIクロックを設定
cfg.pin_sclk = 25; // SCLKが接続されているピン番号, TP CLK
cfg.pin_mosi = 32; // MOSIが接続されているピン番号, TP DIN
cfg.pin_miso = 39; // MISOが接続されているピン番号, TP DOUT
cfg.pin_cs = 33; // CS が接続されているピン番号, TP CS
_touch_instance.config(cfg);
_panel_instance.setTouch(&_touch_instance); // タッチスクリーンをパネルにセットします。
}
setPanel(&_panel_instance);// 使用するパネルをセットします。
}
};
LGFX tft; // 準備したクラスのインスタンスを作成します。
//=====================================================================
  



@1achy
Copy link
Author

1achy commented May 12, 2024

LVGL drivers for Chinese Sunton Smart display boards, aka CYD (Cheap Yellow Display)

Platform IO CI PlatformIO Registry

Supported boards

These Sunton boards have an LCD display and most of them have a touch interface. More information, data sheets, ordering information etc. can be found at Sunton Boards information.

  • N = No touch
  • R = Resistive touch
  • C = Capacitive touch

Currently this library supports the following boards:

  • ESP32-1732S019 N/C
  • ESP32-2424S012 N/C
  • ESP32-2432S022 N/C
  • ESP32-2432S024 R/C/N
  • ESP32-2432S028 R ( 3 variants)
  • ESP32-2432S032 N/R/C
  • ESP32-3248S035 R/C
  • ESP32-4827S043 R/C
  • ESP32-4848S040C _I_Y_1/3
  • ESP32-8048S050 N/C/R
  • ESP32-8048S070 N/C/R

This library integrates seamlessly in PlatformIO and supports these boards by providing display and touch and provides a jump start!

Why this library

With the boards, there is a link supplied and there are a lot of examples present and this looks fine.... If you know your way around....

These examples for LVGL depend on external libraries (LCD_eSPI or LovyanGFX) but also different touch drivers. However, when working with these libraries, I found out that these libraries had their flaws using these boards:

  • Lots of configuring to do before it all works,
  • Using a third party library there is unnecessary code included (for other boards),
  • No support for on the fly rotating,
  • No support for touch,
  • Not using code already present in the ESP firmware
  • No LVGL integration
  • Easy compile the same application for different boards

Dependencies

This library depends on:

[!NOTE] This library uses the "official" drivers from Espressif's component service. These drivers use the newly introduced esp_lcd_panel interfaces. This should provide some support in the future for updates and new boards. These drivers have already been copied and included to this library.

How to use

Get started by following the steps below. It is also highly recommended to look at the demo application esp32-smartdisplay-demo to quickly see the possibilities of this library.

Demo screen

This demo provides:

  • User Interface created using the SquareLine Studio GUI generator.
  • Read the CdS (light sensor)
  • Control of the LEDs
  • Works for all known boards
  • Full source code

The next sections will guide you though the process of creating an application. However, some knowledge of PlatformIO, C/C++ and LVGL is required!

If you run into problems, first try to open a discussion on the github esp32-smartdisplay discussion board.

Step 1: Download (or open) PlatformIO

PlatformIO

This library is made for usage in PlatformIO. If not familiar with PlatformIO please take a look at their site and micro controller boards they support. However these boards only use the Arduino platform and ESP32 boards.

Make sure you have PlatformIO installed and functional. Follow the documentation on their site: https://docs.platformio.org/en/latest/

Step 2: Boards definitions

The board definitions required for this library are defined in the boards library platformio-espressif32-sunton. This library must reside in the <project>/boards directory so PlatformIo will automatically recognize these boards.

It is recommended to use git submodule to include these board definitions automatically.

[!TIP] If you already have a project, clone it with the git clone --recurse-submodules. If creating a new project, use git submodule add https://github.com/rzeldent/platformio-espressif32-sunton.git boards to add them to your project as a submodule.

Step 3: Create a new project

Use the standard PlatformIO create project to start a new project. When using a new PlatformIO installation these boards, defined in platformio-espressif32-sunton, are not present. Just use a known ESP32 board and correct this later in the platformIO file.

Optionally, you can copy the boards definition to the <home>/.platformio\platforms\espressif32\boards directory to have them always available but it is probably easier to create the project, add the boards as a git submodule and change the board afterwards. For each supported board there is a board definition.

Step 4: Add this library to your project

To add this library (and its dependency on LVGL) add the following line to the platformio.ini file:

From the platformIO registry (version 2.0.x):

lib_deps = rzeldent/esp32_smartdisplay

or the Github repository:

lib_deps = https://github.com/rzeldent/esp32-smartdisplay.git

This will automatically download the library, the LVGL library (as a dependency) and set the defines required for the low level drivers.

Step 5: Create a settings file for LVGL

LVGL needs a configuration file; lv_conf.h. This file contains information about the fonts, color depths, default background, styles, etc... The default LVGL template can be found in the LVGL library at the location: lvgl/lv_conf_template.h. This file must be copied to the include directory and renamed to lvgl_conf.h. Also the #if 0 must be removed to enable the file to be included. More information about setting up a project with LVGL can be obtained at LVGL get-started/quick-overview. I suggest to put the lv_conf.h file in the include directory and set the build flags to specify the location of the file, see below.

[!TIP] LVGL can also be downloaded manually from: https://github.com/lvgl/lvgl/archive/master.zip to extract the template. The template can also be copied from the demo application.

Important settings are:

  • Only the R5G6B5 format is supported on these panels.

    /*Color depth: 1 (1 byte per pixel), 8 (RGB332), 16 (RGB565), 32 (ARGB8888)*/
    #define LV_COLOR_DEPTH 16
    
  • Because of the SPI interface, the bytes are sent in big endian format so this must be corrected. The RGB panel interface takes care of this by swapping the GPIO lines but for the SPI controllers this is not optimal. More information about this can be found below.

    /*Swap the 2 bytes of RGB565 color. Useful if the display has an 8-bit interface (e.g. SPI)*/
    #define LV_COLOR_16_SWAP 1
    
  • To have a time reference use the milliseconds reference for the Arduino

    /*Use a custom tick source that tells the elapsed time in milliseconds and enables this code.*/
    /*It removes the need to manually update the tick with `lv_tick_inc()`)*/
    #define LV_TICK_CUSTOM 1
    
  • For debugging, enable CPU usage, FPS (Frames per Second) and memory defragmentation

    #define LV_USE_PERF_MONITOR 1
    #define LV_USE_MEM_MONITOR 1
    
  • (Optionally) Include additional fonts.

    ...
    #define LV_FONT_MONTSERRAT_22 1
    ...
    
  • Optionally, only enable widgets that are used to save on code

    #define LV_USE_ARC        1
    #define LV_USE_BAR        1
    #define LV_USE_BTN        1
    #define LV_USE_BTNMATRIX  1
    ...
    

For debugging it is possible to enable logging from LVGL. The library will output to the debugging output (using lv_log_register_print_cb). To enable logging, set the define:

/*Enable the log module*/
#define LV_USE_LOG 1

By default the logging is only LV_LOG_LEVEL_WARN but can be adjusted in the lv_conf.h.

More information about the LVGL configuration can be found in the excellent LVGL documentation.

[!WARNING] After the library has been build, changes in the lv_conf.h are no longer applied because libraries are cached. To apply these settings, delete the .pio directory so the libraries will be rebuild.

Step 6: Copy the build flags below in your project

Especially the definition of the LV_CONF_PATH is critical, this must point to an absolute path where the lv_conf.h file is located. More about this in the section below.

build_flags =
    -Ofast
    -Wall
    #-D CORE_DEBUG_LEVEL=ARDUHAL_LOG_LEVEL_VERBOSE
    #-D CORE_DEBUG_LEVEL=ARDUHAL_LOG_LEVEL_DEBUG
    #-D CORE_DEBUG_LEVEL=ARDUHAL_LOG_LEVEL_INFO
    # LVGL settings. Point to your lv_conf.h file
    -D LV_CONF_PATH="${PROJECT_DIR}/example/lv_conf.h"

The line in the settings logs to the serial console but can be omitted for production builds:

-D CORE_DEBUG_LEVEL=ARDUHAL_LOG_LEVEL_NONE

The -Wall flag can also be removed but outputs all the warnings.

Step 7: Initialize the display (and touch) in your project

To enable to display in your project call the void smartdisplay_init() function at startup and optionally set the orientation:

void setup()
{
  smartdisplay_init();

auto disp = lv_disp_get_default();
// lv_disp_set_rotation(disp, LV_DISP_ROT_90);
// lv_disp_set_rotation(disp, LV_DISP_ROT_180);
// lv_disp_set_rotation(disp, LV_DISP_ROT_270);
}

and update the timer (and drawing) in the loop:

void loop()
{
lv_timer_handler();
}

Step 8 (Optional): Create your LVGL file or use SquareLine Studio to make a design

There is a good UI designer available for LVGL and free (but some limitations) for personal use: SquareLine Studio:

SquareLine Studio

This tool makes it easy to create transitions, insert images, attach events, work with round screens etc.. A big advantage is that the UI C-code is generated! SquareLine als provides drivers but only export the ui files!

In the project settings change the include lvgl/lvgl.h to lvgl.h.

Step 9: Compile, upload and enjoy

These steps should make it possible to run your application on the display!

If there are problems:

  • Read this manual again to see if all the steps were followed,
  • Check if you installed the board definition(s) correctly, see,
  • Check if the demo application works and look for differences,
  • Check if it is a known or previously resolved issue in the issues,
  • Refer to the discussions,
  • If all fails, submit an issue, no SLA as this is done in my spare time.

More on lv_conf.h

To use the LVGL library, a lv_conf.h file is required to define the settings for LVGL. As this file is referenced from the build of LVGL, the absolute path must be known. Normally this file is included in the include directory of your project but also used by the LVGL in the library.

To include it globally, the define must be (for the include directory):

  -D LV_CONF_PATH=${PROJECT_INCLUDE_DIR}/lv_conf.h

[!TIP] The template for the lv_conf.h file can be found in the LVGL library at .pio/libdeps/<board>/lvgl/lv_conf_template.h.

LV_COLOR_16_SWAP

The LVGL library has a define called LV_COLOR_16_SWAP in the lvgl_conf.h. The value can be 1 or 0. This variable will swap the byte order of the lv_color16_t. This is required because the SPI is by default LSB first.

Setting this variable to true is recommended for the SPI interfaces (GC9A01A, ST7789, ILI9341 and ST7796). If not, a warning will be issued but the code should work. The parallel 16 bits panels without interface are not affected by this; the GPIO pin layout will change accordingly.

This makes it easier to have only one definition for lv_conf.h and SquareLine.

[!IMPORTANT] If this is not done, the code will run but swapping will be done runtime (degrading a bit the performance). So it is preferable to always set the LV_COLOR_16_SWAP to 1 when using SPI.

Additionally, when using the SquareLine Studio for designing the user interface, the display properties (under the project settings) must match this variable. It needs to be set both in lv_conf.h configuration file and the corresponding display properties (16 bit swap) in SquareLine Studio.

SquareLine display properties

LVGL initialization Functions

The library exposes the following functions.

void smartdisplay_init()

This is the first function that needs to be called. It initializes the display controller and touch controller and will turn on the display at 50% brightness.

void smartdisplay_lcd_set_backlight(float duty)

Set the brightness of the backlight display. The timer used has 13 bits (0 - 8191) but this is converted into a float so the value can be set in percent.. The range is from [0, 1] so 0 is off, 0.5 is half and 1 is full brightness.

void smartdisplay_lcd_set_brightness_cb(smartdisplay_lcd_adaptive_brightness_cb_t cb, uint interval)

This function can be called to periodically call a user defined function to set the brightness of the display. If a NULL value is passed for the parameter cb the functionality is disabled and the display is set to 50% brightness.

The callback function must have the following format:

float smartdisplay_lcd_adaptive_brightness_function)()
{
...
return <float[0,1]>
}

If the board has a CdS sensor, a callback is automatically provided. The callback can be set to the internal function smartdisplay_lcd_set_brightness_cb. This function will adjust the brightness to the value read from the CdS sensor on the front of the display.

So, to enable adaptive brightness using the CdS sensor, call

smartdisplay_lcd_set_brightness_cb(smartdisplay_lcd_adaptive_brightness_cds, 100);

If no CdS sensor is present, for example, the time of day can be used or sunrise/set.

void smartdisplay_led_set_rgb(bool r, bool g, bool b)

If the board has a RGB led, this function controls the on/off state of the RGB leds. A true value means: ON (LED is lit), false turns off the led.

This function allows only 8 LED colors:

R G B Color
0 0 0 Black
1 0 0 Red
0 1 0 Green
0 0 1 Blue
1 1 0 Yellow
1 0 1 Magenta
0 1 1 Cyan
1 1 1 White


LVGL drivers for Chinese Sunton Smart display boards, aka CYD (Cheap Yellow Display) Platform IO CI PlatformIO Registry

Supported boards
These Sunton boards have an LCD display and most of them have a touch interface. More information, data sheets, ordering information etc. can be found at Sunton Boards information.

N = No touch
R = Resistive touch
C = Capacitive touch
Currently this library supports the following boards:

ESP32-1732S019 N/C
ESP32-2424S012 N/C
ESP32-2432S022 N/C
ESP32-2432S024 R/C/N
ESP32-2432S028 R ( 3 variants)
ESP32-2432S032 N/R/C
ESP32-3248S035 R/C
ESP32-4827S043 R/C
ESP32-4848S040C _I_Y_1/3
ESP32-8048S050 N/C/R
ESP32-8048S070 N/C/R
This library integrates seamlessly in PlatformIO and supports these boards by providing display and touch and provides a jump start!

Why this library
With the boards, there is a link supplied and there are a lot of examples present and this looks fine.... If you know your way around....

These examples for LVGL depend on external libraries (LCD_eSPI or LovyanGFX) but also different touch drivers. However, when working with these libraries, I found out that these libraries had their flaws using these boards:

Lots of configuring to do before it all works,
Using a third party library there is unnecessary code included (for other boards),
No support for on the fly rotating,
No support for touch,
Not using code already present in the ESP firmware
No LVGL integration
Easy compile the same application for different boards
Dependencies
This library depends on:

LVGL, currently version 8.3.9
platformio-espressif32-sunton
[!NOTE] This library uses the "official" drivers from Espressif's component service. These drivers use the newly introduced esp_lcd_panel interfaces. This should provide some support in the future for updates and new boards. These drivers have already been copied and included to this library.

How to use
Get started by following the steps below. It is also highly recommended to look at the demo application esp32-smartdisplay-demo to quickly see the possibilities of this library.

Demo screen

This demo provides:

User Interface created using the SquareLine Studio GUI generator.
Read the CdS (light sensor)
Control of the LEDs
Works for all known boards
Full source code
The next sections will guide you though the process of creating an application. However, some knowledge of PlatformIO, C/C++ and LVGL is required!

If you run into problems, first try to open a discussion on the github esp32-smartdisplay discussion board.

Step 1: Download (or open) PlatformIO
PlatformIO

This library is made for usage in PlatformIO. If not familiar with PlatformIO please take a look at their site and micro controller boards they support. However these boards only use the Arduino platform and ESP32 boards.

Make sure you have PlatformIO installed and functional. Follow the documentation on their site: https://docs.platformio.org/en/latest/

Step 2: Boards definitions
The board definitions required for this library are defined in the boards library platformio-espressif32-sunton. This library must reside in the /boards directory so PlatformIo will automatically recognize these boards.

It is recommended to use git submodule to include these board definitions automatically.

[!TIP] If you already have a project, clone it with the git clone --recurse-submodules. If creating a new project, use git submodule add https://github.com/rzeldent/platformio-espressif32-sunton.git boards to add them to your project as a submodule.

Step 3: Create a new project
Use the standard PlatformIO create project to start a new project. When using a new PlatformIO installation these boards, defined in platformio-espressif32-sunton, are not present. Just use a known ESP32 board and correct this later in the platformIO file.

Optionally, you can copy the boards definition to the /.platformio\platforms\espressif32\boards directory to have them always available but it is probably easier to create the project, add the boards as a git submodule and change the board afterwards. For each supported board there is a board definition.

Step 4: Add this library to your project
To add this library (and its dependency on LVGL) add the following line to the platformio.ini file:

From the platformIO registry (version 2.0.x):

lib_deps = rzeldent/esp32_smartdisplay
or the Github repository:

lib_deps = https://github.com/rzeldent/esp32-smartdisplay.git
This will automatically download the library, the LVGL library (as a dependency) and set the defines required for the low level drivers.

Step 5: Create a settings file for LVGL
LVGL needs a configuration file; lv_conf.h. This file contains information about the fonts, color depths, default background, styles, etc... The default LVGL template can be found in the LVGL library at the location: lvgl/lv_conf_template.h. This file must be copied to the include directory and renamed to lvgl_conf.h. Also the #if 0 must be removed to enable the file to be included. More information about setting up a project with LVGL can be obtained at LVGL get-started/quick-overview. I suggest to put the lv_conf.h file in the include directory and set the build flags to specify the location of the file, see below.

[!TIP] LVGL can also be downloaded manually from: https://github.com/lvgl/lvgl/archive/master.zip to extract the template. The template can also be copied from the demo application.

Important settings are:

Only the R5G6B5 format is supported on these panels.

/Color depth: 1 (1 byte per pixel), 8 (RGB332), 16 (RGB565), 32 (ARGB8888)/
#define LV_COLOR_DEPTH 16
Because of the SPI interface, the bytes are sent in big endian format so this must be corrected. The RGB panel interface takes care of this by swapping the GPIO lines but for the SPI controllers this is not optimal. More information about this can be found below.

/Swap the 2 bytes of RGB565 color. Useful if the display has an 8-bit interface (e.g. SPI)/
#define LV_COLOR_16_SWAP 1
To have a time reference use the milliseconds reference for the Arduino

/Use a custom tick source that tells the elapsed time in milliseconds and enables this code./
/It removes the need to manually update the tick with lv_tick_inc())/
#define LV_TICK_CUSTOM 1
For debugging, enable CPU usage, FPS (Frames per Second) and memory defragmentation

#define LV_USE_PERF_MONITOR 1
#define LV_USE_MEM_MONITOR 1
(Optionally) Include additional fonts.

...
#define LV_FONT_MONTSERRAT_22 1
...
Optionally, only enable widgets that are used to save on code

#define LV_USE_ARC 1
#define LV_USE_BAR 1
#define LV_USE_BTN 1
#define LV_USE_BTNMATRIX 1
...
For debugging it is possible to enable logging from LVGL. The library will output to the debugging output (using lv_log_register_print_cb). To enable logging, set the define:

/Enable the log module/
#define LV_USE_LOG 1
By default the logging is only LV_LOG_LEVEL_WARN but can be adjusted in the lv_conf.h.

More information about the LVGL configuration can be found in the excellent LVGL documentation.

[!WARNING] After the library has been build, changes in the lv_conf.h are no longer applied because libraries are cached. To apply these settings, delete the .pio directory so the libraries will be rebuild.

Step 6: Copy the build flags below in your project
Especially the definition of the LV_CONF_PATH is critical, this must point to an absolute path where the lv_conf.h file is located. More about this in the section below.

build_flags =
-Ofast
-Wall
#-D CORE_DEBUG_LEVEL=ARDUHAL_LOG_LEVEL_VERBOSE
#-D CORE_DEBUG_LEVEL=ARDUHAL_LOG_LEVEL_DEBUG
#-D CORE_DEBUG_LEVEL=ARDUHAL_LOG_LEVEL_INFO
# LVGL settings. Point to your lv_conf.h file
-D LV_CONF_PATH="${PROJECT_DIR}/example/lv_conf.h"
The line in the settings logs to the serial console but can be omitted for production builds:

-D CORE_DEBUG_LEVEL=ARDUHAL_LOG_LEVEL_NONE
The -Wall flag can also be removed but outputs all the warnings.

Step 7: Initialize the display (and touch) in your project
To enable to display in your project call the void smartdisplay_init() function at startup and optionally set the orientation:

void setup()
{
smartdisplay_init();

auto disp = lv_disp_get_default();
// lv_disp_set_rotation(disp, LV_DISP_ROT_90);
// lv_disp_set_rotation(disp, LV_DISP_ROT_180);
// lv_disp_set_rotation(disp, LV_DISP_ROT_270);
}
and update the timer (and drawing) in the loop:

void loop()
{
lv_timer_handler();
}
Step 8 (Optional): Create your LVGL file or use SquareLine Studio to make a design
There is a good UI designer available for LVGL and free (but some limitations) for personal use: SquareLine Studio:

SquareLine Studio

This tool makes it easy to create transitions, insert images, attach events, work with round screens etc.. A big advantage is that the UI C-code is generated! SquareLine als provides drivers but only export the ui files!

In the project settings change the include lvgl/lvgl.h to lvgl.h.

Step 9: Compile, upload and enjoy
These steps should make it possible to run your application on the display!

If there are problems:

Read this manual again to see if all the steps were followed,
Check if you installed the board definition(s) correctly, see,
Check if the demo application works and look for differences,
Check if it is a known or previously resolved issue in the issues,
Refer to the discussions,
If all fails, submit an issue, no SLA as this is done in my spare time.
More on lv_conf.h
To use the LVGL library, a lv_conf.h file is required to define the settings for LVGL. As this file is referenced from the build of LVGL, the absolute path must be known. Normally this file is included in the include directory of your project but also used by the LVGL in the library.

To include it globally, the define must be (for the include directory):

-D LV_CONF_PATH=${PROJECT_INCLUDE_DIR}/lv_conf.h
[!TIP] The template for the lv_conf.h file can be found in the LVGL library at .pio/libdeps//lvgl/lv_conf_template.h.

LV_COLOR_16_SWAP
The LVGL library has a define called LV_COLOR_16_SWAP in the lvgl_conf.h. The value can be 1 or 0. This variable will swap the byte order of the lv_color16_t. This is required because the SPI is by default LSB first.

Setting this variable to true is recommended for the SPI interfaces (GC9A01A, ST7789, ILI9341 and ST7796). If not, a warning will be issued but the code should work. The parallel 16 bits panels without interface are not affected by this; the GPIO pin layout will change accordingly.

This makes it easier to have only one definition for lv_conf.h and SquareLine.

[!IMPORTANT] If this is not done, the code will run but swapping will be done runtime (degrading a bit the performance). So it is preferable to always set the LV_COLOR_16_SWAP to 1 when using SPI.

Additionally, when using the SquareLine Studio for designing the user interface, the display properties (under the project settings) must match this variable. It needs to be set both in lv_conf.h configuration file and the corresponding display properties (16 bit swap) in SquareLine Studio.

SquareLine display properties

LVGL initialization Functions
The library exposes the following functions.

void smartdisplay_init()
This is the first function that needs to be called. It initializes the display controller and touch controller and will turn on the display at 50% brightness.

void smartdisplay_lcd_set_backlight(float duty)
Set the brightness of the backlight display. The timer used has 13 bits (0 - 8191) but this is converted into a float so the value can be set in percent.. The range is from [0, 1] so 0 is off, 0.5 is half and 1 is full brightness.

void smartdisplay_lcd_set_brightness_cb(smartdisplay_lcd_adaptive_brightness_cb_t cb, uint interval)
This function can be called to periodically call a user defined function to set the brightness of the display. If a NULL value is passed for the parameter cb the functionality is disabled and the display is set to 50% brightness.

The callback function must have the following format:

float smartdisplay_lcd_adaptive_brightness_function)()
{
...
return <float[0,1]>
}
If the board has a CdS sensor, a callback is automatically provided. The callback can be set to the internal function smartdisplay_lcd_set_brightness_cb. This function will adjust the brightness to the value read from the CdS sensor on the front of the display.

So, to enable adaptive brightness using the CdS sensor, call

smartdisplay_lcd_set_brightness_cb(smartdisplay_lcd_adaptive_brightness_cds, 100);
If no CdS sensor is present, for example, the time of day can be used or sunrise/set.

void smartdisplay_led_set_rgb(bool r, bool g, bool b)
If the board has a RGB led, this function controls the on/off state of the RGB leds. A true value means: ON (LED is lit), false turns off the led.

This function allows only 8 LED colors:

R G B Color
0 0 0 Black
1 0 0 Red
0 1 0 Green
0 0 1 Blue
1 1 0 Yellow
1 0 1 Magenta
0 1 1 Cyan
1 1 1 White
RGB Mix

touch_calibration_data_t touch_calibration_data
This data structure holds the calibration data for the touch display. If the valid member is true, adjustments will be applied.

touch_calibration_data_t smartdisplay_compute_touch_calibration(const lv_point_t screen[3], const lv_point_t touch[3])
This function returns the calibration data based on 3 points. The screen array contains the (selected) calibration points on the screen and the touch array the actual measured position. The data returned can set in to the touch_calibration_data

Rotation of the display and touch
The library supports rotating for most of the controllers using hardware. Support for the direct 16bits parallel connection is done using software emulation (in LVGL). Rotating the touch is done by LVGL when rotating.

From the LVGL documentation: The rotation values are relative to how you would rotate the physical display in the clockwise direction. Thus, LV_DISP_ROT_90 means you rotate the hardware 90 degrees clockwise, and the display rotates 90 degrees counterclockwise to compensate.

Rotating is done calling the lv_disp_set_rotation function in the LVGL library with the rotation:

auto disp = lv_disp_get_default();
lv_disp_set_rotation(disp, LV_DISP_ROT_90);
Some boards are around that have flipped screens, this is probably due to differences during tha manufacturing or using different TFTs. It is possible to correct these boards overriding the default defines.

To adjust the display and touch to the default (LV_DISP_ROT_NONE) there are 6 defines in the boards definition:

Name Description
DISPLAY_SWAP_XY Swaps the X and Y coordinates for the display
DISPLAY_MIRROR_X Mirrors the X coordinate for the display
DISPLAY_MIRROR_Y Mirrors the Y coordinate for the display
TOUCH_SWAP_XY Swaps the X and Y coordinates for the touch
TOUCH_MIRROR_X Mirrors the X coordinate for the touch
TOUCH_MIRROR_Y Mirrors the Y coordinate for the touch
Appendix: Template to support ALL the boards
The platformio.ini file below supports all the boards. This is useful when running your application on multiple boards. If using one board only, uncomment the default_envs for that board in the [platformio] section.

[!TIP] When building using a pipeline (github action), the ini below, with all the boards, can be used automatically create builds for all the boards.

[platformio]
#default_envs = esp32-1732S019C
#default_envs = esp32-1732S019N
#default_envs = esp32-2424S012C
#default_envs = esp32-2424S012N
#default_envs = esp32-2432S022N
#default_envs = esp32-2432S022C
#default_envs = esp32-2432S024C
#default_envs = esp32-2432S024N
#default_envs = esp32-2432S024R
#default_envs = esp32-2432S028R
#default_envs = esp32-2432S028Rv2
#default_envs = esp32-2432S028Rv3
#default_envs = esp32-2432S032C
#default_envs = esp32-2432S032N
#default_envs = esp32-2432S032R
#default_envs = esp32-3248S035C
#default_envs = esp32-3248S035R
#default_envs = esp32-4827S043C
#default_envs = esp32-4827S043N
#default_envs = esp32-4827S043R
#default_envs = esp32-4848S040CIY1
#default_envs = esp32-4848S040CIY3
#default_envs = esp32-8048S043C
#default_envs = esp32-8048S043N
#default_envs = esp32-8048S043R
#default_envs = esp32-8048S050C
#default_envs = esp32-8048S050N
#default_envs = esp32-8048S050R
#default_envs = esp32-8048S070C
#default_envs = esp32-8048S070N
#default_envs = esp32-8048S070R

[env]
platform = espressif32
framework = arduino

monitor_speed = 115200
monitor_rts = 0
monitor_dtr = 0
monitor_filters = esp32_exception_decoder

Partition scheme for OTA

board_build.partitions = min_spiffs.csv

build_flags =
-Ofast
#-Wall
-D CORE_DEBUG_LEVEL=ARDUHAL_LOG_LEVEL_VERBOSE
# LVGL settings
#-DLV_CONF_PATH=${PROJECT_INCLUDE_DIR}/lv_conf.h

lib_deps =
https://github.com/rzeldent/esp32-smartdisplay.git

[env:esp32-1732S019C]
board = esp32-1732S019C

[env:esp32-1732S019N]
board = esp32-1732S019N

[env:esp32-2424S012C]
board = esp32-2424S012C

[env:esp32-2424S012N]
board = esp32-2424S012N

[env:esp32-2432S022N]
board = esp32-2432S022N

[env:esp32-2432S022C]
board = esp32-2432S022C

[env:esp32-2432S024C]
board = esp32-2432S024C

[env:esp32-2432S024N]
board = esp32-2432S024N

[env:esp32-2432S024R]
board = esp32-2432S024R

[env:esp32-2432S028R]
board = esp32-2432S028R

[env:esp32-2432S028Rv2]
board = esp32-2432S028Rv2

[env:esp32-2432S028Rv3]
board = esp32-2432S028Rv3

[env:esp32-2432S032C]
board = esp32-2432S032C

[env:esp32-2432S032N]
board = esp32-2432S032N

[env:esp32-2432S032R]
board = esp32-2432S032R

[env:esp32-3248S035C]
board = esp32-3248S035C

[env:esp32-3248S035R]
board = esp32-3248S035R

[env:esp32-4827S043C]
board = esp32-4827S043C

[env:esp32-4827S043R]
board = esp32-4827S043R

[env:esp32-4827S043N]
board = esp32-4827S043N

[env:esp32-4848S040CIY1]
board = esp32-4848S040CIY1

[env:esp32-4848S040CIY3]
board = esp32-4848S040CIY3

[env:esp32-8048S043C]
board = esp32-8048S043C

[env:esp32-8048S043N]
board = esp32-8048S043N

[env:esp32-8048S043R]
board = esp32-8048S043R

[env:esp32-8048S050C]
board = esp32-8048S050C

[env:esp32-8048S050N]
board = esp32-8048S050N

[env:esp32-8048S050R]
board = esp32-8048S050R

[env:esp32-8048S070C]
board = esp32-8048S070C

[env:esp32-8048S070N]
board = esp32-8048S070N

[env:esp32-8048S070R]
board = esp32-8048S070R
Appendix: External dependencies
The following libraries are used from the Espressif component registry:

Name Version
ESP_LCD_PANEL_IO_ADDITIONS v1.0.0
ESP IO Expander Component v1.0.0
ESP LCD Touch v1.1.1

@1achy
Copy link
Author

1achy commented May 12, 2024

It is work !!!!!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant