Skip to content

Latest commit

 

History

History
50 lines (31 loc) · 1.68 KB

README.md

File metadata and controls

50 lines (31 loc) · 1.68 KB

pycontrolledreduction

This package is a simple wrapper to integrate most of controlled reduction library code into SageMath.

Given an hypersurface it computes the characteristic polynomial (and matrix) of the Frobenius action on the primitive cohomology group.

Install

sage -pip install --upgrade git+https://github.com/edgarcosta/pycontrolledreduction.git@master#egg=pycontrolledreduction

If you don't have permissions to install it system wide, please add the flag --user to install it just for you.

sage -pip install --user --upgrade git+https://github.com/edgarcosta/pycontrolledreduction.git@master#egg=pycontrolledreduction

Examples

Plane curves

sage: from pycontrolledreduction import controlledreduction
sage: R.<x,y,z> = ZZ[]
sage: controlledreduction(x^4 + y^4 + z^4 + 1*x^2*y*z, next_prime(10000), False).factor()
(10007*T^2 - 192*T + 1) * (10007*T^2 - 128*T + 1) * (10007*T^2 + 192*T + 1)
sage: controlledreduction(y^2*z + y*z^2 - (x^3 + y*x^2 -2*x*z^2), 97, false).list() == EllipticCurve([0, 1, 1, -2, 0]).change_ring(GF(97)).frobenius_polynomial().reverse().list()
True

K3 surfaces

Note: that the polynomial has degree 21, as we are omiting the factor (1-p*T) coming from the polarisation.

sage: from pycontrolledreduction import controlledreduction
sage: R.<x,y,z,w> = ZZ[]
sage: controlledreduction(x^4 + y^4 + z^4 + w^4 + x*y*z*w, 11, False).factor()  # long time
(-1) * (11*T + 1)^6 * (11*T - 1)^13 * (121*T^2 + 18*T + 1)
sage: controlledreduction(x^4 + y^4 + z^4 + w^4 + x*y*z*w, 23, False).factor()  # long time
(-1) * (23*T - 1)^9 * (23*T + 1)^10 * (529*T^2 - 38*T + 1)