-
Notifications
You must be signed in to change notification settings - Fork 0
/
learnopencv.py
195 lines (151 loc) · 6.49 KB
/
learnopencv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from __future__ import division
import cv2
import time
import numpy as np
import base64
from flask import Blueprint
from kaggle.api.kaggle_api_extended import KaggleApi
bp = Blueprint('bbb', __name__, url_prefix='/bbb')
api = KaggleApi()
api.authenticate()
api.dataset_download_file('changethetuneman/openpose-model', 'pose_iter_102000.caffemodel', path="files/hand/")
protoFile = "./files/hand/pose_deploy.prototxt"
weightsFile = "./files/hand/pose_iter_102000.caffemodel"
nPoints = 22
POSE_PAIRS = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], [10, 11], [11, 12],
[0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]
net = cv2.dnn.readNetFromCaffe(protoFile, weightsFile)
threshold = 0.1
# defining face detector
face_cascade = cv2.CascadeClassifier("cascade_files/aGest.xml")
ds_factor = 0.6
class VideoCamera(object):
def __init__(self):
# capturing video
self.video = cv2.VideoCapture(0)
def __del__(self):
# releasing camera
self.video.release()
def get_frame(self):
# extracting frames
ret, frame = self.video.read()
frame = cv2.resize(frame, None, fx=ds_factor, fy=ds_factor,
interpolation=cv2.INTER_AREA)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
face_rects = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x, y, w, h) in face_rects:
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
break
# encode OpenCV raw frame to jpg and displaying it
ret, jpeg = cv2.imencode('.jpg', frame)
return jpeg.tobytes()
def from_b64(uri):
'''
Convert from b64 uri to OpenCV image
Sample input: '......'
'''
encoded_data = uri.split(',')[1]
data = base64.b64decode(encoded_data)
np_arr = np.fromstring(data, np.uint8)
img = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
return img
def to_b64(img):
'''
Convert from OpenCV image to b64 uri
Sample output: '......'
'''
_, buffer = cv2.imencode('.jpg', img)
uri = base64.b64encode(buffer).decode('utf-8')
return f'data:image/jpg;base64,{uri}'
def keypoint(base64_data):
try:
frame = from_b64(base64_data)
frameWidth = frame.shape[1]
frameHeight = frame.shape[0]
aspect_ratio = frameWidth / frameHeight
t = time.time()
# input image dimensions for the network
inHeight = 368
inWidth = int(((aspect_ratio * inHeight) * 8) // 8)
inpBlob = cv2.dnn.blobFromImage(frame, 1.0 / 255, (inWidth, inHeight), (0, 0, 0), swapRB=False, crop=False)
net.setInput(inpBlob)
output = net.forward()
# Empty list to store the detected keypoints
points = []
for i in range(nPoints):
# confidence map of corresponding body's part.
probMap = output[0, i, :, :]
probMap = cv2.resize(probMap, (frameWidth, frameHeight))
# Find global maxima of the probMap.
minVal, prob, minLoc, point = cv2.minMaxLoc(probMap)
if prob > threshold:
# Add the point to the list if the probability is greater than the threshold
points.append((int(point[0]), int(point[1])))
else:
points.append(None)
# Draw Skeleton
for pair in POSE_PAIRS:
partA = pair[0]
partB = pair[1]
if points[partA] and points[partB]:
cv2.line(frame, points[partA], points[partB], (0, 255, 255), 2)
cv2.circle(frame, points[partA], 8, (0, 0, 255), thickness=-1, lineType=cv2.FILLED)
cv2.circle(frame, points[partB], 8, (0, 0, 255), thickness=-1, lineType=cv2.FILLED)
print("time taken by network : {:.3f}".format(time.time() - t))
return to_b64(frame)
except:
# just in case some process is failed
# normally, for first connection
# return the original data
return base64_data
def keypoint_video():
cap = cv2.VideoCapture(0)
hasFrame, frame = cap.read()
frameWidth = frame.shape[1]
frameHeight = frame.shape[0]
aspect_ratio = frameWidth / frameHeight
inHeight = 368
inWidth = int(((aspect_ratio * inHeight) * 8) // 8)
net = cv2.dnn.readNetFromCaffe(protoFile, weightsFile)
k = 0
while True:
k += 1
t = time.time()
hasFrame, frame = cap.read()
frameCopy = np.copy(frame)
if not hasFrame:
cv2.waitKey()
break
inpBlob = cv2.dnn.blobFromImage(frame, 1.0 / 255, (inWidth, inHeight),
(0, 0, 0), swapRB=False, crop=False)
net.setInput(inpBlob)
output = net.forward()
print("forward = {}".format(time.time() - t))
# Empty list to store the detected keypoints
points = []
for i in range(nPoints):
# confidence map of corresponding body's part.
probMap = output[0, i, :, :]
probMap = cv2.resize(probMap, (frameWidth, frameHeight))
# Find global maxima of the probMap.
minVal, prob, minLoc, point = cv2.minMaxLoc(probMap)
if prob > threshold:
cv2.circle(frameCopy, (int(point[0]), int(point[1])), 6, (0, 255, 255), thickness=-1,
lineType=cv2.FILLED)
cv2.putText(frameCopy, "{}".format(i), (int(point[0]), int(point[1])), cv2.FONT_HERSHEY_SIMPLEX, .8,
(0, 0, 255), 2, lineType=cv2.LINE_AA)
# Add the point to the list if the probability is greater than the threshold
points.append((int(point[0]), int(point[1])))
else:
points.append(None)
# Draw Skeleton
for pair in POSE_PAIRS:
partA = pair[0]
partB = pair[1]
if points[partA] and points[partB]:
cv2.line(frame, points[partA], points[partB], (0, 255, 255), 2, lineType=cv2.LINE_AA)
cv2.circle(frame, points[partA], 5, (0, 0, 255), thickness=-1, lineType=cv2.FILLED)
cv2.circle(frame, points[partB], 5, (0, 0, 255), thickness=-1, lineType=cv2.FILLED)
print("Time Taken for frame = {}".format(time.time() - t))
frame_encoded = cv2.imencode('.jpg', frame)[1].tobytes()
yield (b'--frame\r\n'b'Content-Type: image/jpeg\r\n\r\n' + frame_encoded + b'\r\n')