-
Notifications
You must be signed in to change notification settings - Fork 0
/
day4till.tlv
186 lines (151 loc) · 7.22 KB
/
day4till.tlv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
\m4_TLV_version 1d: tl-x.org
\SV
// This code can be found in: https://github.com/stevehoover/RISC-V_MYTH_Workshop
m4_include_lib(['https://raw.githubusercontent.com/BalaDhinesh/RISC-V_MYTH_Workshop/master/tlv_lib/risc-v_shell_lib.tlv'])
\SV
m4_makerchip_module // (Expanded in Nav-TLV pane.)
\TLV
// /====================\
// | Sum 1 to 9 Program |
// \====================/
//
// Program for MYTH Workshop to test RV32I
// Add 1,2,3,...,9 (in that order).
//
// Regs:
// r10 (a0): In: 0, Out: final sum
// r12 (a2): 10
// r13 (a3): 1..10
// r14 (a4): Sum
//
// External to function:
m4_asm(ADD, r10, r0, r0) // Initialize r10 (a0) to 0.
// Function:
m4_asm(ADD, r14, r10, r0) // Initialize sum register a4 with 0x0
m4_asm(ADDI, r12, r10, 1010) // Store count of 10 in register a2.
m4_asm(ADD, r13, r10, r0) // Initialize intermediate sum register a3 with 0
// Loop:
m4_asm(ADD, r14, r13, r14) // Incremental addition
m4_asm(ADDI, r13, r13, 1) // Increment intermediate register by 1
m4_asm(BLT, r13, r12, 1111111111000) // If a3 is less than a2, branch to label named <loop>
m4_asm(ADD, r10, r14, r0) // Store final result to register a0 so that it can be read by main program
// Optional:
// m4_asm(JAL, r7, 00000000000000000000) // Done. Jump to itself (infinite loop). (Up to 20-bit signed immediate plus implicit 0 bit (unlike JALR) provides byte address; last immediate bit should also be 0)
m4_define_hier(['M4_IMEM'], M4_NUM_INSTRS)
|cpu
@0
$reset = *reset;
$pc[31:0] = >>1$reset ? 32'b0 : >>1$pc + 32'd4;
@1
$imem_rd_addr[M4_IMEM_INDEX_CNT-1:0] = $pc[M4_IMEM_INDEX_CNT+1:2];
$imem_rd_en = !$reset;
$instr[31:0] = $imem_rd_data[31:0];
?$imem_rd_en
@1
$imem_rd_data[31:0] = /imem[$imem_rd_addr]$instr;
@1
//instruction type decode
$is_u_instr = $instr[6:2] ==? 5'b0x101;
$is_s_instr = $instr[6:2] ==? 5'b0100x;
$is_r_instr = $instr[6:2] ==? 5'b01011 ||
$instr[6:2] ==? 5'b011x0 ||
$instr[6:2] ==? 5'b10100;
$is_j_instr = $instr[6:2] ==? 5'b11011;
$is_i_instr = $instr[6:2] ==? 5'b0000x ||
$instr[6:2] ==? 5'b001x0 ||
$instr[6:2] ==? 5'b11001;
$is_b_instr = $instr[6:2] ==? 5'b11000;
//immediate decode
$imm[31:0] = $is_i_instr ? {{21{$instr[31]}}, $instr[30:20]} :
$is_s_instr ? {{21{$instr[31]}}, $instr[30:25], $instr[11:7]} :
$is_b_instr ? {{20{$instr[31]}}, $instr[7], $instr[30:25], $instr[11:8], 1'b0} :
$is_u_instr ? {$instr[31:12], 12'b0} :
$is_j_instr ? {{12{$instr[31]}}, $instr[19:12], $instr[20], $instr[30:21], 1'b0} :
32'b0;
// instruction decode (others fields)
$rs2[4:0] = $instr[24:20];
$rs1[4:0] = $instr[19:15];
$rd[4:0] = $instr[11:7];
$opcode[6:0] = $instr[6:0];
$func7[6:0] = $instr[31:25];
$func3[2:0] = $instr[14:12];
//Instruction field based on the Instruction type
$rs2_valid = $is_r_instr || $is_s_instr || $is_b_instr;
?$rs2_valid
$rs2[4:0] = $instr[24:20];
$rs1_valid = $is_r_instr || $is_i_instr || $is_s_instr || $is_b_instr;
?$rs1_valid
$rs1[4:0] = $instr[19:15];
$funct3_valid = $is_r_instr || $is_i_instr || $is_s_instr || $is_b_instr;
?$funct3_valid
$funct3[2:0] = $instr[14:12];
$funct7_valid = $is_r_instr ;
?$funct7_valid
$funct7[6:0] = $instr[31:25];
$rd_valid = $is_r_instr || $is_i_instr || $is_u_instr || $is_j_instr;
?$rd_valid
$rd[4:0] = $instr[11:7];
// individual decode
$dec_bits [10:0] = {$funct7[5], $funct3, $opcode};
$is_beq = $dec_bits ==? 11'bx_000_1100011;
$is_bne = $dec_bits ==? 11'bx_001_1100011;
$is_blt = $dec_bits ==? 11'bx_100_1100011;
$is_bge = $dec_bits ==? 11'bx_101_1100011;
$is_bltu = $dec_bits ==? 11'bx_110_1100011;
$is_bgeu = $dec_bits ==? 11'bx_111_1100011;
$is_addi = $dec_bits ==? 11'bx_000_0010011;
$is_add = $dec_bits ==? 11'b0_000_0110011;
`BOGUS_USE($is_beq $is_bne $is_blt $is_bge $is_bltu $is_bgeu $is_addi $is_add)
//register file read
$rf_wr_en = 1'b0;
$rf_wr_index[4:0] = 5'b0;
$rf_wr_data[31:0] = 32'b0;
$rf_rd_en1 = $rs1_valid;
$rf_rd_index1[4:0] = $rs1;
$rf_rd_en2 = $rs2_valid;
$rf_rd_index2[4:0] = $rs2;
$src1_value[31:0] = $rf_rd_data1; //new
$src2_value[31:0] = $rf_rd_data2;
`BOGUS_USE ($rf_rd_data1)
`BOGUS_USE ($rf_rd_data2)
//alu
$result[31:0] = $is_addi ? $src1_value + $imm :
$is_add ? $src1_value + $src2_value :
32'bx ;
//register file write
$rf_wr_en = $rd_valid && $rd != 5'b0;
$rf_wr_index[4:0] = $rd;
$rf_wr_data[31:0] = $result;
//implementing branch instructions
$taken_branch = $is_beq ? ($src1_value == $src2_value):
$is_bne ? ($src1_value != $src2_value):
$is_blt ? (($src1_value < $src2_value) ^ ($src1_value[31] != $src2_value[31])):
$is_bge ? (($src1_value >= $src2_value) ^ ($src1_value[31] != $src2_value[31])):
$is_bltu ? ($src1_value < $src2_value):
$is_bgeu ? ($src1_value >= $src2_value):
1'b0;
`BOGUS_USE($taken_branch)
`BOGUS_USE($taken_branch)
//Complementing Branch Instructions
$br_target_pc[31:0] = $pc + $imm;
//testbench
*passed = |cpu/xreg[10]>>5$value == (1+2+3+4+5+6+7+8+9) ;
// Note: Because of the magic we are using for visualisation, if visualisation is enabled below,
// be sure to avoid having unassigned signals (which you might be using for random inputs)
// other than those specifically expected in the labs. You'll get strange errors for these.
// Assert these to end simulation (before Makerchip cycle limit).
*passed = *cyc_cnt > 40;
*failed = 1'b0;
// Macro instantiations for:
// o instruction memory
// o register file
// o data memory
// o CPU visualization
|cpu
m4+imem(@1) // Args: (read stage)
m4+rf(@1, @1) // Args: (read stage, write stage) - if equal, no register bypass is required
//m4+dmem(@4) // Args: (read/write stage)
//m4+myth_fpga(@0) // Uncomment to run on fpga
m4+cpu_viz(@4) // For visualisation, argument should be at least equal to the last stage of CPU logic. @4 would work for all labs.
\SV
endmodule