-
Notifications
You must be signed in to change notification settings - Fork 3
/
unsupervised_el.py
executable file
·390 lines (336 loc) · 20.9 KB
/
unsupervised_el.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import json
import sys
import pickle
import utils
import numpy as np
import random
import os.path
import pdb
import time
import warnings
warnings.filterwarnings("ignore")
random.seed(110)
STOPWORDS = {'a', 'about', 'above', 'across', 'after', 'afterwards', 'again', 'against', 'all',
'almost', 'alone', 'along', 'already', 'also', 'although', 'always', 'am', 'among',
'amongst', 'amoungst', 'amount', 'an', 'and', 'another', 'any', 'anyhow', 'anyone',
'anything', 'anyway', 'anywhere', 'are', 'around', 'as', 'at', 'back', 'be',
'became', 'because', 'become', 'becomes', 'becoming', 'been', 'before', 'beforehand',
'behind', 'being', 'below', 'beside', 'besides', 'between', 'beyond', 'both', 'bottom',
'but', 'by', 'call', 'can', 'cannot', 'cant', 'dont', 'co', 'con', 'could', 'couldnt',
'cry', 'de', 'describe', 'detail', 'do', 'done', 'down', 'due', 'during', 'each', 'eg',
'eight', 'either', 'eleven', 'else', 'elsewhere', 'empty', 'enough', 'etc', 'even',
'ever', 'every', 'everyone', 'everything', 'everywhere', 'except', 'few', 'fifteen',
'fify', 'fill', 'find', 'fire', 'first', 'five', 'for', 'former', 'formerly', 'forty',
'found', 'four', 'from', 'front', 'full', 'further', 'get', 'give', 'go', 'had',
'has', 'hasnt', 'have', 'he', 'hence', 'her', 'here', 'hereafter', 'hereby', 'herein',
'hereupon', 'hers', 'herself', 'him', 'himself', 'his', 'how', 'however', 'hundred',
'i', 'ie', 'if', 'in', 'inc', 'indeed', 'interest', 'into', 'is', 'it', 'its', 'itself',
'keep', 'last', 'latter', 'latterly', 'least', 'less', 'ltd', 'made', 'many', 'may',
'me', 'meanwhile', 'might', 'mill', 'mine', 'more', 'moreover', 'most', 'mostly',
'move', 'much', 'must', 'my', 'myself', 'name', 'namely', 'neither', 'never', 'nevertheless',
'next', 'nine', 'no', 'nobody', 'none', 'noone', 'nor', 'not', 'nothing', 'now',
'nowhere', 'of', 'off', 'often', 'on', 'once', 'one', 'only', 'onto', 'or', 'other',
'others', 'otherwise', 'our', 'ours', 'ourselves', 'out', 'over', 'own', 'part', 'per',
'perhaps', 'please', 'put', 'rather', 're', 'same', 'see', 'seem', 'seemed', 'seeming',
'seems', 'serious', 'several', 'she', 'should', 'show', 'side', 'since', 'sincere', 'six',
'sixty', 'so', 'some', 'somehow', 'someone', 'something', 'sometime', 'sometimes',
'somewhere', 'still', 'such', 'system', 'take', 'ten', 'than', 'that', 'the', 'their',
'them', 'themselves', 'then', 'thence', 'there', 'thereafter', 'thereby', 'therefore',
'therein', 'thereupon', 'these', 'they', 'thick', 'thin', 'third', 'this', 'those', 'though',
'three', 'through', 'throughout', 'thru', 'thus', 'to', 'together', 'too', 'top', 'toward',
'towards', 'twelve', 'twenty', 'two', 'un', 'under', 'until', 'up', 'upon', 'us', 'very',
'via', 'was', 'we', 'well', 'were', 'what', 'whatever', 'when', 'whence', 'whenever',
'where', 'whereafter', 'whereas', 'whereby', 'wherein', 'whereupon', 'wherever', 'whether',
'which', 'while', 'whither', 'who', 'whoever', 'whole', 'whom', 'whose', 'why', 'will',
'with', 'within', 'without', 'would', 'yet', 'you', 'your', 'yours', 'yourself', 'yourselves',
'st', 'years', 'yourselves', 'new', 'used', 'known', 'year', 'later', 'including', 'used',
'end', 'did', 'just', 'best', 'using'}
def is_important(s, mention_tokens, ctxt_type):
"""
an important word is not a stopword, a number, or len == 1
"""
word = s[0]; tfidf = s[1]
if ctxt_type == 'global':
try:
if len(word) <= 1 or word.lower() in mention_tokens or tfidf == '0':
return False
float(word)
return False
except:
return True
else:
try:
if len(word) <= 1 or word.lower() in STOPWORDS or tfidf == 'None':
return False
float(word)
return False
except:
return True
def getContext(left_ctxt, right_ctxt, mention, ctxt_type, ws, doc_name, position, ferr):
max_len = len(left_ctxt) + len(right_ctxt)
# choose only window_size number of words from both left and right contextual cues
if ws != -1:
context_info = left_ctxt[-ws:] + right_ctxt[:ws]
else:
context_info = left_ctxt + right_ctxt
# removing single letter words, numbers, and stopwords from context
context_info = [context_pair for context_pair in context_info if is_important(context_pair, mention.lower().split(), ctxt_type)]
while(len(context_info) == 0):
if ws == -1 or ws >= max_len:
context_words = []; tfidf_scores = []
ferr.write("[Missing Context]: All context words are unimportant for "+doc_name+" "+mention+" "+str(position)+"\n")
break
ws = ws * 2
context_info = left_ctxt[-ws:] + right_ctxt[:ws]
context_info = [context_pair for context_pair in context_info if is_important(context_pair, mention.lower().split(), ctxt_type)]
else:
context_words = list(zip(*context_info))[0]; tfidf_scores = list(zip(*context_info))[1]
context_words = list(map(lambda x:x.lower(),context_words))
# As of now all words have equal weight (use the scores from the json file once updated)
tfidf_scores = [1.0]*len(context_words)
return context_words, tfidf_scores
def getEntityEmbedding(cand, vectors, dim, doc_name):
try:
entity_vector = vectors[cand]
except KeyError:
entity_vector = np.zeros((dim,))
return entity_vector
def computeScores(data, tag, vectors, ferr, params):
queryId2Mention = {}; mention2QueryId = {}; qid = 1
isWeighted = params['weight']; isMeanCentered = params['meanCenter']; embeddingType = params['embeddingType']
num_cands = params['numCands']; num_components = params['ncomp']
tpca = 0.0; twpca = 0.0
trueCandMentions = False
key = []; cand_names = []; hard2beat_baseline = []; avg_baseline = []; wavg_baseline = []; agw_pca = []; agw_wpca = []; labels = []
for doc_name in data:
doc_candidates = []; doc_weight_array = []
doc_entity_candidates = []
for mention_dict in data[doc_name]:
mention_name = mention_dict["mention"]
if 'tabel' in tag:
position = str(mention_dict["row"])+str(mention_dict["col"])
else:
position = mention_dict["posI"]
true_entity_id = mention_dict["wikidata_id"]
isDifficult = mention_dict["difficulty"]
if str(true_entity_id) == '-1':
ferr.write("[Wikipedia Page for True-Entity has no Wikidata Mapping]: Skip this mention: "+doc_name+" "+mention_name+"\n")
continue
if "candidates" in mention_dict:
candidate_tuples = []
temp_candidates = []; weight_array = []
flag = -1; cand_pos = 1
for cand in mention_dict["candidates"]:
cand_name = cand[0]
prominence_score = 1/float(cand_pos)
try:
entity_vector = vectors[cand_name]
except KeyError:
ferr.write("[Missing Embedding] Skipping candidates that do not have pre-trained entity embeddings: "+doc_name+" "+mention_name+" "+cand_name+"\n")
continue
# candidates used for constructing the grassmannian subspace
candidate_tuples.append((cand_name, prominence_score))
temp_candidates.append(cand_name); weight_array.append(prominence_score)
# check if the true entity was found in the candidates
#if trueCandMentions:
if cand_name == true_entity_id:
flag = 0
cand_pos += 1
# restricting the data to only top-num_cands candidates per mention
if num_cands != -1 and len(temp_candidates) >= num_cands:
break
# if the true entity is not present in the candidates, ignore this mention
if trueCandMentions and flag == -1:
ferr.write("[Missing True Entity] Skipping mentions without a true entity in the candidates: "+doc_name+" "+mention_name+"\n")
mention2QueryId[(doc_name,mention_name,position)] = (-1,-1)
continue
else:
if flag == -1:
mention2QueryId[(doc_name,mention_name,position)] = (-1,-1)
else:
if (doc_name,mention_name,position) not in mention2QueryId:
mention2QueryId[(doc_name,mention_name,position)] = (qid,int(isDifficult))
queryId2Mention[qid] = (doc_name,mention_name,position)
qid+=1
doc_candidates += temp_candidates; doc_weight_array += weight_array
doc_entity_candidates.append((true_entity_id, mention_name, position, candidate_tuples))
else: # if there are no candidates, ignore this mention
ferr.write("[Missing Candidates] Skipping mentions with no candidates: "+doc_name+" "+mention_name+"\n")
mention2QueryId[(doc_name,mention_name,position)] = (-1,-1)
if len(doc_entity_candidates) == 0:
ferr.write("[Skip Document] No true entity in the document"+doc_name+"\n")
continue
uniform_weights = list(np.ones(len(doc_candidates)))
tpca_start = time.clock()
subspace, sinV, _ = utils.constructRepresentation(doc_candidates, uniform_weights, vectors, 'pca', isMeanCentered, num_components, (doc_name,))
tpca_end = time.clock()
tpca += tpca_end - tpca_start
avgSubspace = utils.constructRepresentation(doc_candidates, uniform_weights, vectors, 'avg', debugInfo=(doc_name,))
twpca_start = time.clock()
subspace_weighted, sinV_weighted, _ = utils.constructRepresentation(doc_candidates, doc_weight_array, vectors, 'wpca', isMeanCentered, num_components, (doc_name,))
twpca_end = time.clock()
twpca += twpca_end - twpca_start
weighted_avgSubspace = utils.constructRepresentation(doc_candidates, doc_weight_array, vectors, 'avg', debugInfo=(doc_name,))
for (true_entity, mention, position, candidates) in doc_entity_candidates:
queryId, isDifficult = mention2QueryId[(doc_name,mention,position)]
if queryId != -1:
for candidate in candidates:
candidate_id = candidate[0]
simProminence = float(candidate[1])
entity_vector = vectors[candidate_id]/np.linalg.norm(vectors[candidate_id])
tpca_start = time.clock()
if isMeanCentered:
simPCA = utils.computeVecSubspaceSimilarity(entity_vector - avgSubspace, subspace, sinV, isWeighted)
else:
simPCA = utils.computeVecSubspaceSimilarity(entity_vector, subspace, sinV, isWeighted)
tpca_end = time.clock()
tpca += tpca_end - tpca_start
simAvg = utils.cosineSimilarity(entity_vector, avgSubspace)
twpca_start = time.clock()
if isMeanCentered:
simWPCA = utils.computeVecSubspaceSimilarity(entity_vector - avgSubspace, subspace_weighted, sinV_weighted, isWeighted)
else:
simWPCA = utils.computeVecSubspaceSimilarity(entity_vector, subspace_weighted, sinV_weighted, isWeighted)
twpca_end = time.clock()
twpca += twpca_end - twpca_start
simWAvg = utils.cosineSimilarity(entity_vector, weighted_avgSubspace)
if candidate_id == true_entity:
label = 1
else:
label = 0
key.append("qid:"+str(queryId)); cand_names.append(candidate_id); hard2beat_baseline.append(simProminence); avg_baseline.append(simAvg); wavg_baseline.append(simWAvg); agw_pca.append(simPCA); agw_wpca.append(simWPCA); labels.append(label)
return key, cand_names, hard2beat_baseline, avg_baseline, wavg_baseline, agw_pca, agw_wpca, labels, mention2QueryId, queryId2Mention, tpca, twpca
def evaluationMetrics(doc_stats):
num_mentions = 0.0
micro_ceil = 0.0; micro_accuracy = 0.0; micro_mrr = 0.0
macro_ceil = 0.0; macro_accuracy = 0.0; macro_mrr = 0.0
for doc in doc_stats:
num_mentions += doc_stats[doc][0]
micro_ceil += doc_stats[doc][1]; micro_accuracy += doc_stats[doc][2]; micro_mrr += doc_stats[doc][3]
macro_ceil += doc_stats[doc][1]/doc_stats[doc][0]; macro_accuracy += doc_stats[doc][2]/doc_stats[doc][0]; macro_mrr += doc_stats[doc][3]/doc_stats[doc][0]
return num_mentions, micro_ceil, micro_accuracy, micro_mrr, macro_ceil, macro_accuracy, macro_mrr
def writeResults(fout, hyperparams, num_easy_mentions, micro_ceil_easy, micro_accuracy_easy, micro_mrr_easy, macro_ceil_easy, macro_accuracy_easy, macro_mrr_easy, num_hard_mentions, micro_ceil_hard, micro_accuracy_hard, micro_mrr_hard, macro_ceil_hard, macro_accuracy_hard, macro_mrr_hard, num_mentions, micro_ceil, micro_accuracy, micro_mrr, macro_ceil, macro_accuracy, macro_mrr, num_docs_easy, num_docs_hard, num_docs):
if num_easy_mentions != 0:
micro_ceil_easy = micro_ceil_easy/float(num_easy_mentions)
micro_accuracy_easy = np.array(micro_accuracy_easy)/float(num_easy_mentions)
micro_mrr_easy = np.array(micro_mrr_easy)/float(num_easy_mentions)
if num_hard_mentions != 0:
micro_ceil_hard = micro_ceil_hard/float(num_hard_mentions)
micro_accuracy_hard = np.array(micro_accuracy_hard)/float(num_hard_mentions)
micro_mrr_hard = np.array(micro_mrr_hard)/float(num_hard_mentions)
if num_docs_easy != 0:
macro_ceil_easy = macro_ceil_easy/float(num_docs_easy);
macro_accuracy_easy = np.array(macro_accuracy_easy)/float(num_docs_easy);
macro_mrr_easy = np.array(macro_mrr_easy)/float(num_docs_easy);
if num_docs_hard != 0:
macro_ceil_hard = macro_ceil_hard/float(num_docs_hard)
macro_accuracy_hard = np.array(macro_accuracy_hard)/float(num_docs_hard)
macro_mrr_hard = np.array(macro_mrr_hard)/float(num_docs_hard)
micro_ceil = micro_ceil/float(num_mentions); macro_ceil = macro_ceil/float(num_docs)
micro_accuracy = np.array(micro_accuracy)/float(num_mentions); macro_accuracy = np.array(macro_accuracy)/float(num_docs)
micro_mrr = np.array(micro_mrr)/float(num_mentions); macro_mrr = np.array(macro_mrr)/float(num_docs)
fout.write("{}".format(hyperparams))
fout.write("\t{}\t{:.3%}\t{:.3%}\t{:.3%}".format(str(num_easy_mentions), micro_ceil_easy, micro_accuracy_easy, micro_mrr_easy))
fout.write("\t{}\t{:.3%}\t{:.3%}\t{:.3%}".format(str(num_hard_mentions), micro_ceil_hard, micro_accuracy_hard, micro_mrr_hard))
fout.write("\t{}\t{:.3%}\t{:.3%}\t{:.3%}".format(str(num_mentions), micro_ceil, micro_accuracy, micro_mrr))
fout.write("\t{}\t{:.3%}\t{:.3%}\t{:.3%}".format(str(num_docs_easy), macro_ceil_easy, macro_accuracy_easy, macro_mrr_easy))
fout.write("\t{}\t{:.3%}\t{:.3%}\t{:.3%}".format(str(num_docs_hard), macro_ceil_hard, macro_accuracy_hard, macro_mrr_hard))
fout.write("\t{}\t{:.3%}\t{:.3%}\t{:.3%}\n".format(str(num_docs), macro_ceil, macro_accuracy, macro_mrr))
fout.flush()
def evaluatePerformance(keys, cand_names, ypredList, ytrueList, mention2QueryId, queryId2Mention, ferr):
mention_scores = {}; confidence_scores = {}
for qid, cand_name, ypred, ytrue in zip(keys, cand_names, ypredList, ytrueList):
qid = int(qid.split(":")[-1]); ytrue = int(ytrue); ypred = float(ypred)
if qid in queryId2Mention:
key = queryId2Mention[qid]
if key+(cand_name,) not in confidence_scores:
confidence_scores[key+(cand_name,)] = ypred
else:
ferr.write("Unexpected Error: candidate "+str(cand_name)+" occured twice for the mention: "+",".join(key)+"\n")
if key not in mention_scores:
mention_scores[key] = [[ypred], [ytrue]]
else:
mention_scores[key][0].append(ypred)
mention_scores[key][1].append(ytrue)
else:
ferr.write("Unexpected Error: qid "+str(qid)+" not found in queryId2Mention dictionary\n")
doc_stats_easy = {}; doc_stats_hard = {}; doc_stats = {}
for key in mention2QueryId:
try:
if len(mention2QueryId[key]) == 2:
queryId = mention2QueryId[key][0]; isDifficult = int(mention2QueryId[key][1])
except TypeError:
queryId = mention2QueryId[key]; isDifficult = 0
if queryId != -1:
ceil = 1.0
try:
rankList = [x for _,x in sorted(zip(mention_scores[key][0],mention_scores[key][1]),reverse=True)]
pos = rankList.index(1) + 1
except KeyError:
ferr.write("QueryId: {} belonging to the (doc,mention,position): {} has no candidates (effectively after ignoring those that don't have any embeddings)".format(queryId, queryId2Mention[queryId]))
pos = -1
except ValueError:
pos = -1
if pos == 1:
accuracy = 1.0
else:
accuracy = 0.0
if pos == -1:
mrr = 0.0
else:
mrr = 1.0/float(pos)
else:
ceil = 0.0; accuracy = 0.0; mrr = 0.0
if key[0] not in doc_stats:
doc_stats[key[0]] = [1.0, ceil, accuracy, mrr]
else:
doc_stats[key[0]][0] += 1.0; doc_stats[key[0]][1] += ceil; doc_stats[key[0]][2] += accuracy; doc_stats[key[0]][3] += mrr;
if isDifficult == 0:
if key[0] not in doc_stats_easy:
doc_stats_easy[key[0]] = [1.0, ceil, accuracy, mrr]
else:
doc_stats_easy[key[0]][0] += 1.0; doc_stats_easy[key[0]][1] += ceil; doc_stats_easy[key[0]][2] += accuracy; doc_stats_easy[key[0]][3] += mrr;
if isDifficult == 1:
if key[0] not in doc_stats_hard:
doc_stats_hard[key[0]] = [1.0, ceil, accuracy, mrr]
else:
doc_stats_hard[key[0]][0] += 1.0; doc_stats_hard[key[0]][1] += ceil; doc_stats_hard[key[0]][2] += accuracy; doc_stats_hard[key[0]][3] += mrr;
num_easy_mentions, micro_ceil_easy, micro_accuracy_easy, micro_mrr_easy, macro_ceil_easy, macro_accuracy_easy, macro_mrr_easy = evaluationMetrics(doc_stats_easy)
num_hard_mentions, micro_ceil_hard, micro_accuracy_hard, micro_mrr_hard, macro_ceil_hard, macro_accuracy_hard, macro_mrr_hard = evaluationMetrics(doc_stats_hard)
num_mentions, micro_ceil, micro_accuracy, micro_mrr, macro_ceil, macro_accuracy, macro_mrr = evaluationMetrics(doc_stats)
return num_easy_mentions, micro_ceil_easy, micro_accuracy_easy, micro_mrr_easy, macro_ceil_easy, macro_accuracy_easy, macro_mrr_easy, num_hard_mentions, micro_ceil_hard, micro_accuracy_hard, micro_mrr_hard, macro_ceil_hard, macro_accuracy_hard, macro_mrr_hard, num_mentions, micro_ceil, micro_accuracy, micro_mrr, macro_ceil, macro_accuracy, macro_mrr, doc_stats_easy, doc_stats_hard, doc_stats
datasets = ["aida_test_complete.json", "wikipedia_complete.json", "clueweb_complete.json", "web-tables_complete.json"]
vectors = utils.loadWikipedia2VecVectors("./embeddings/deepwalk_wikidata.pickle")
embeddingType = 'deepwalk'; meanCenter=False; isWeighted = True; numCands = 20; ncomp = 10
for fname in datasets:
fdata = open("./data/"+fname, "r")
data = json.load(fdata)
name = "unsupervised"
print("="*30)
print(name+": "+fname)
features = [["degree", None],["avg", None],["wavg", None],["eigen", None],["weigen", None]]
fout = {}
for feature in features:
tmp_name = fname.split("/")[-1].split(".")[0]
if 'tables' in tmp_name:
tag = 'tabel_'
else:
tag = 'others_'
results_fname = 'results/'+tmp_name+'_embedding='+str(embeddingType)+'_meanCentering='+str(meanCenter)+'_weightedSimilarity='+str(isWeighted)+'_'+feature[0]+'.tsv'
fout[feature[0]] = open(results_fname,'w')
fout[feature[0]].write("Hyperparams\t#EasyMentions\tCeiling-Easy(Micro)\tAccuracy-Easy(Micro)\tMRR-Easy(Micro)\t#HardMentions\tCeiling-Hard(Micro)\tAccuracy-Hard(Micro)\tMRR-Hard(Micro)\t#Mentions\tCeiling(Micro)\tAccuracy(Micro)\tMRR(Micro)\t#EasyDocs\tCeiling-Easy(Macro)\tAccuracy-Easy(Macro)\tMRR-Easy(Macro)\t#HardDocs\tCeiling-Hard(Macro)\tAccuracy-Hard(Macro)\tMRR-Hard(Macro)\t#Docs\tCeiling(Macro)\tAccuracy(Macro)\tMRR(Macro)\n")
params = {'weight': isWeighted, 'meanCenter': meanCenter, 'embeddingType': embeddingType, 'numCands': numCands, 'ncomp': ncomp}
ferr = open("errors_unsup_"+tag, "w")
key, cand_names, degree_baseline, avg_baseline, wavg_baseline, eigen, weigen, labels, mention2QueryId, queryId2Mention, tpca, twpca = computeScores(data, tag, vectors, ferr, params)
features[0][1] = degree_baseline; features[1][1] = avg_baseline; features[2][1] = wavg_baseline; features[3][1] = eigen; features[4][1] = weigen
for feature in features:
print("*"*20)
print("FeautreType: {} EmbeddingType: {} isMeanCentered: {} isWeighted: {} #Cands: {} #PCAComps: {}".format(feature[0],params['embeddingType'],params['meanCenter'],params['weight'],params['numCands'],params['ncomp']))
hyperparams = str(numCands)+"_"+str(ncomp)
num_easy_mentions, micro_ceil_easy, micro_accuracy_easy, micro_mrr_easy, macro_ceil_easy, macro_accuracy_easy, macro_mrr_easy, num_hard_mentions, micro_ceil_hard, micro_accuracy_hard, micro_mrr_hard, macro_ceil_hard, macro_accuracy_hard, macro_mrr_hard, num_mentions, micro_ceil, micro_accuracy, micro_mrr, macro_ceil, macro_accuracy, macro_mrr, doc_stats_easy, doc_stats_hard, doc_stats = evaluatePerformance(key, cand_names, feature[1], labels, mention2QueryId, queryId2Mention, ferr)
writeResults(fout[feature[0]], hyperparams, num_easy_mentions, micro_ceil_easy, micro_accuracy_easy, micro_mrr_easy, macro_ceil_easy, macro_accuracy_easy, macro_mrr_easy, num_hard_mentions, micro_ceil_hard, micro_accuracy_hard, micro_mrr_hard, macro_ceil_hard, macro_accuracy_hard, macro_mrr_hard, num_mentions, micro_ceil, micro_accuracy, micro_mrr, macro_ceil, macro_accuracy, macro_mrr, len(doc_stats_easy), len(doc_stats_hard), len(doc_stats))
fout[feature[0]].flush()
for feature in features:
fout[feature[0]].close()
ferr.close()
print("="*30)