-
-
Notifications
You must be signed in to change notification settings - Fork 6
/
evaluate_against_reference.py
576 lines (495 loc) · 19.8 KB
/
evaluate_against_reference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
"""
Module for evaluating JSON file comparisons using various metrics.
"""
import json
import os
import difflib
import math
from collections import Counter
from functools import reduce
import nltk
import numpy as np
import pandas as pd
import spacy
import textstat
from nltk.tokenize import word_tokenize
from nltk.translate.meteor_score import meteor_score
from sklearn.decomposition import TruncatedSVD
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from textblob import TextBlob
from jiwer import wer
# Ensure nltk resources are downloaded
nltk.download("punkt", quiet=True)
nltk.download("wordnet", quiet=True)
nltk.download("omw-1.4", quiet=True)
# Load spacy model
nlp = spacy.load("en_core_web_sm")
OUTPUT_FOLDER = "output"
REWRITTEN_FOLDER = "rewritten"
RESULTS_JSON_PATH = "reports/evaluation_results.json"
RESULTS_HTML_PATH = "reports/evaluation_results.html"
def normalize_for_aggregated_score(scores, reference):
"""
Normalize scores for aggregated score calculation.
"""
max_values = {
"Edit Distance": len(reference),
"WER": 1,
"CIDEr": 10,
"Hamming Distance": len(reference),
"Levenshtein Distance": len(reference),
}
normalized_scores = {}
for metric in scores:
if metric in max_values:
if metric in ["Edit Distance", "WER", "Hamming Distance", "Levenshtein Distance"]:
normalized_scores[metric] = (1 - (scores[metric] / max_values[metric])) * 100
else:
normalized_scores[metric] = (scores[metric] / max_values[metric]) * 100
elif metric in [
"BLEU-1", "Jaccard Similarity", "ROUGE-L", "TF-IDF Cosine Similarity",
"METEOR", "BoW Cosine Similarity", "F1 Score", "Overlap Coefficient",
"Dice Coefficient", "Longest Common Subsequence", "Type-Token Ratio",
"Lexical Diversity", "Sentiment Analysis"
]:
normalized_scores[metric] = scores[metric] * 100
elif metric in [
"Gunning Fog Index", "Automated Readability Index", "Entropy",
"Readability Score", "SMOG Index", "ARI Score", "NIST Score", "LSA Similarity",
"Lexical Density", "Coleman Liau Index"
]:
normalized_scores[metric] = (1 - (scores[metric] / max_values.get(metric, 100))) * 100
else:
normalized_scores[metric] = scores[metric]
return normalized_scores
def compare_json_files(output_file, rewritten_file):
"""
Compare two JSON files using various metrics.
"""
with open(output_file, "r", encoding="utf-8") as f1, open(rewritten_file, "r", encoding="utf-8") as f2:
try:
data1 = json.load(f1)
data2 = json.load(f2)
except json.JSONDecodeError:
print(f"ERROR: Invalid JSON format in {output_file} or {rewritten_file}")
return None
reference = flatten_json(data1)
candidate = flatten_json(data2)
scores = {
"Output File": output_file,
"BLEU-1": calculate_bleu(reference, candidate, n=1),
"Jaccard Similarity": jaccard_similarity(reference, candidate),
"ROUGE-L": rouge_l_similarity(reference, candidate),
"TF-IDF Cosine Similarity": tfidf_cosine_similarity(reference, candidate),
"METEOR": calculate_meteor(reference, candidate),
"Edit Distance": calculate_edit_distance(reference, candidate),
"BoW Cosine Similarity": bow_cosine_similarity(reference, candidate),
"WER": calculate_wer(reference, candidate),
"CIDEr": calculate_cider(reference, candidate),
"Hamming Distance": hamming_distance(reference, candidate),
"F1 Score": f1_score(reference, candidate),
"Overlap Coefficient": overlap_coefficient(reference, candidate),
"Dice Coefficient": dice_coefficient(reference, candidate),
"Longest Common Subsequence": longest_common_subsequence(reference, candidate),
"Levenshtein Distance": levenshtein_distance(reference, candidate),
"Readability Score": readability_score(" ".join(reference), " ".join(candidate)),
"Sentence BLEU": custom_sentence_bleu(" ".join(reference), " ".join(candidate)),
"SMOG Index": smog_index(" ".join(reference), " ".join(candidate)),
"ARI Score": ari_score(" ".join(reference), " ".join(candidate)),
"NIST Score": nist_score(reference, candidate),
"LSA Similarity": lsa_similarity(" ".join(reference), " ".join(candidate)),
"Sentiment Analysis": sentiment_analysis(" ".join(reference), " ".join(candidate)),
"Lexical Density": lexical_density(" ".join(reference), " ".join(candidate)),
"Gunning Fog Index": gunning_fog_index(" ".join(reference), " ".join(candidate)),
"Coleman Liau Index": coleman_liau_index(" ".join(reference), " ".join(candidate)),
"Automated Readability Index": automated_readability_index(" ".join(reference), " ".join(candidate))
}
normalized_scores = normalize_for_aggregated_score(scores, reference)
weights = {
"BLEU-1": 0.10,
"Jaccard Similarity": 0.05,
"ROUGE-L": 0.08,
"TF-IDF Cosine Similarity": 0.10,
"METEOR": 0.10,
"Edit Distance": 0.07,
"BoW Cosine Similarity": 0.06,
"WER": 0.07,
"CIDEr": 0.03,
"Hamming Distance": 0.01,
"F1 Score": 0.07,
"Overlap Coefficient": 0.03,
"Dice Coefficient": 0.03,
"Longest Common Subsequence": 0.03,
"Levenshtein Distance": 0.03,
"Readability Score": 0.01,
"Sentence BLEU": 0.02,
"SMOG Index": 0.01,
"ARI Score": 0.01,
"NIST Score": 0.08,
"LSA Similarity": 0.02,
"Sentiment Analysis": 0.02,
"Lexical Density": 0.02,
"Gunning Fog Index": 0.01,
"Coleman Liau Index": 0.01,
"Automated Readability Index": 0.01
}
aggregated_score = sum(weights[metric] * normalized_scores[metric] for metric in weights)
scores["Ugly Score"] = aggregated_score
return scores
def save_individual_metrics(output_file, metrics):
"""
Save individual metrics to a JSON file.
"""
filename = os.path.basename(output_file).replace("_rewritten.json", "_metrics_comparison.json")
path = os.path.join(REWRITTEN_FOLDER, filename)
with open(path, "w", encoding="utf-8") as f:
json.dump(metrics, f, indent=4)
def calculate_bleu(reference, candidate, n=4):
"""
Calculate BLEU score for the given reference and candidate.
"""
precisions = []
for i in range(1, n + 1):
ref_ngrams = Counter(zip(*[reference[j:] for j in range(i)]))
cand_ngrams = Counter(zip(*[candidate[j:] for j in range(i)]))
precision = sum((ref_ngrams & cand_ngrams).values()) / max(1, sum(cand_ngrams.values()))
precisions.append(precision)
if min(precisions) > 0:
bp = brevity_penalty(reference, candidate)
bleu_score = bp * geometric_mean(precisions)
else:
bleu_score = 0.0
return bleu_score
def custom_sentence_bleu(references, hypothesis):
"""
Custom BLEU score calculation for sentences.
"""
references = references.split()
hypothesis = hypothesis.split()
return custom_bleu(references, hypothesis)
def custom_bleu(list_of_references, hypotheses):
"""
Custom BLEU score calculation.
"""
weights = [0.25, 0.25, 0.25, 0.25]
p_n = [modified_precision(list_of_references, hypotheses, i) for i in range(1, 5)]
s = (w * math.log(p_i) if p_i > 0 else 0 for w, p_i in zip(weights, p_n))
return math.exp(sum(s))
def modified_precision(references, hypothesis, n):
"""
Calculate modified precision for BLEU score.
"""
ref_ngrams = Counter(ngram for reference in references for ngram in zip(*[reference[i:] for i in range(n)]))
hyp_ngrams = Counter(ngram for ngram in zip(*[hypothesis[i:] for i in range(n)]))
numerator = sum((hyp_ngrams & ref_ngrams).values())
denominator = max(1, sum(hyp_ngrams.values()))
return numerator / denominator
def geometric_mean(precisions):
"""
Calculate geometric mean of precisions.
"""
return (reduce(lambda x, y: x * y, precisions)) ** (1.0 / len(precisions))
def brevity_penalty(reference, candidate):
"""
Calculate brevity penalty for BLEU score.
"""
ref_length = len(reference)
cand_length = len(candidate)
if cand_length <= ref_length:
return 1
return math.exp(1 - (ref_length / cand_length))
def flatten_json(data, prefix=""):
"""
Flatten a nested JSON structure.
"""
flattened = []
if isinstance(data, dict):
for key, value in data.items():
flattened.extend(flatten_json(value, prefix + key + "."))
elif isinstance(data, list):
for i, value in enumerate(data):
flattened.extend(flatten_json(value, prefix + str(i) + "."))
else:
flattened.append(str(data))
return flattened
def jaccard_similarity(list1, list2):
"""
Calculate Jaccard similarity between two lists.
"""
set1 = set(list1)
set2 = set(list2)
return len(set1.intersection(set2)) / len(set1.union(set2))
def rouge_l_similarity(reference, candidate):
"""
Calculate ROUGE-L similarity between reference and candidate.
"""
lcs = difflib.SequenceMatcher(None, reference, candidate).find_longest_match(
0, len(reference), 0, len(candidate)
)
return (lcs.size * 2) / (len(reference) + len(candidate))
def tfidf_cosine_similarity(reference, candidate):
"""
Calculate TF-IDF cosine similarity between reference and candidate.
"""
vectorizer = TfidfVectorizer()
ref_string = " ".join(reference)
cand_string = " ".join(candidate)
tfidf_matrix = vectorizer.fit_transform([ref_string, cand_string])
return cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:2])[0][0]
def calculate_meteor(reference, candidate):
"""
Calculate METEOR score for reference and candidate.
"""
ref_string = " ".join(reference)
cand_string = " ".join(candidate)
ref_tokens = word_tokenize(ref_string)
cand_tokens = word_tokenize(cand_string)
return meteor_score([ref_tokens], cand_tokens)
def calculate_edit_distance(reference, candidate):
"""
Calculate edit distance between reference and candidate.
"""
return difflib.SequenceMatcher(None, reference, candidate).ratio()
def bow_cosine_similarity(reference, candidate):
"""
Calculate Bag-of-Words cosine similarity between reference and candidate.
"""
vectorizer = CountVectorizer()
ref_string = " ".join(reference)
cand_string = " ".join(candidate)
bow_matrix = vectorizer.fit_transform([ref_string, cand_string])
return cosine_similarity(bow_matrix[0:1], bow_matrix[1:2])[0][0]
def calculate_wer(reference, candidate):
"""
Calculate Word Error Rate (WER) between reference and candidate.
"""
ref_string = " ".join(reference)
cand_string = " ".join(candidate)
return wer(ref_string, cand_string)
def calculate_cider(reference, candidate):
"""
Calculate CIDEr score for reference and candidate.
"""
def tokenize(text):
return [word_tokenize(sent) for sent in nltk.sent_tokenize(text)]
def compute_tf(text):
tf = Counter()
for sent in text:
tf.update(sent)
return tf
ref_string = " ".join(reference)
cand_string = " ".join(candidate)
reference_tokens = tokenize(ref_string)
candidate_tokens = tokenize(cand_string)
ref_tf = compute_tf(reference_tokens)
cand_tf = compute_tf(candidate_tokens)
all_tokens = set(ref_tf.keys()).union(set(cand_tf.keys()))
ref_vector = np.array([ref_tf[token] for token in all_tokens])
cand_vector = np.array([cand_tf[token] for token in all_tokens])
ref_norm = np.linalg.norm(ref_vector)
cand_norm = np.linalg.norm(cand_vector)
if ref_norm == 0 or cand_norm == 0:
return 0.0
tf_cosine = np.dot(ref_vector, cand_vector) / (ref_norm * cand_norm)
idf = {
token: np.log((len(reference_tokens) + 1) / (1 + ref_tf[token])) + 1
for token in all_tokens
}
ref_idf_vector = np.array([idf[token] * ref_tf[token] for token in all_tokens])
cand_idf_vector = np.array([idf[token] * cand_tf[token] for token in all_tokens])
idf_norm = np.linalg.norm(ref_idf_vector)
if idf_norm == 0:
return 0.0
cider_score = np.dot(ref_idf_vector, cand_idf_vector) / idf_norm
return cider_score
def hamming_distance(reference, candidate):
"""
Calculate Hamming distance between reference and candidate.
"""
return sum(el1 != el2 for el1, el2 in zip(reference, candidate)) + abs(
len(reference) - len(candidate)
)
def f1_score(reference, candidate):
"""
Calculate F1 score for reference and candidate.
"""
ref_tokens = set(reference)
cand_tokens = set(candidate)
tp = len(ref_tokens & cand_tokens)
fp = len(cand_tokens - ref_tokens)
fn = len(ref_tokens - cand_tokens)
if tp + fp == 0 or tp + fn == 0:
return 0.0
precision = tp / (tp + fp)
recall = tp / (tp + fn)
if precision + recall == 0:
return 0.0
return 2 * (precision * recall) / (precision + recall)
def overlap_coefficient(reference, candidate):
"""
Calculate overlap coefficient between reference and candidate.
"""
ref_set = set(reference)
cand_set = set(candidate)
return len(ref_set & cand_set) / min(len(ref_set), len(cand_set))
def dice_coefficient(reference, candidate):
"""
Calculate Dice coefficient between reference and candidate.
"""
ref_set = set(reference)
cand_set = set(candidate)
return 2 * len(ref_set & cand_set) / (len(ref_set) + len(cand_set))
def longest_common_subsequence(reference, candidate):
"""
Calculate longest common subsequence between reference and candidate.
"""
matcher = difflib.SequenceMatcher(None, reference, candidate)
match = matcher.find_longest_match(0, len(reference), 0, len(candidate))
return match.size
def levenshtein_distance(reference, candidate):
"""
Calculate Levenshtein distance between reference and candidate.
"""
d = [[i + j for j in range(len(candidate) + 1)] for i in range(len(reference) + 1)]
for i in range(1, len(reference) + 1):
for j in range(1, len(candidate) + 1):
d[i][j] = min(
d[i - 1][j] + 1,
d[i][j - 1] + 1,
d[i - 1][j - 1] + (reference[i - 1] != candidate[j - 1]),
)
return d[len(reference)][len(candidate)]
def readability_score(reference, candidate):
"""
Calculate readability score for reference and candidate.
"""
return (textstat.flesch_reading_ease(reference) + textstat.flesch_reading_ease(candidate)) / 2
def smog_index(reference, candidate):
"""
Calculate SMOG index for reference and candidate.
"""
return (textstat.smog_index(reference) + textstat.smog_index(candidate)) / 2
def ari_score(reference, candidate):
"""
Calculate ARI score for reference and candidate.
"""
return (textstat.automated_readability_index(reference) + textstat.automated_readability_index(candidate)) / 2
def nist_score(reference, candidate):
"""
Calculate NIST score for reference and candidate.
"""
return nltk.translate.nist_score.sentence_nist([reference], candidate)
def lsa_similarity(reference, candidate):
"""
Calculate LSA similarity between reference and candidate.
"""
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform([reference, candidate])
svd = TruncatedSVD(n_components=1)
X_lsa = svd.fit_transform(X)
return cosine_similarity(X_lsa[0:1], X_lsa[1:2])[0][0]
def sentiment_analysis(reference, candidate):
"""
Perform sentiment analysis on reference and candidate.
"""
ref_sentiment = TextBlob(reference).sentiment.polarity
cand_sentiment = TextBlob(candidate).sentiment.polarity
return 1 - abs(ref_sentiment - cand_sentiment)
def lexical_density(reference, candidate):
"""
Calculate lexical density for reference and candidate.
"""
def calculate_lexical_density(text):
words = word_tokenize(text)
lexical_words = [word for word in words if word.isalpha()]
return len(lexical_words) / len(words) if words else 0
ref_lexical_density = calculate_lexical_density(reference)
cand_lexical_density = calculate_lexical_density(candidate)
return (ref_lexical_density + cand_lexical_density) / 2
def gunning_fog_index(reference, candidate):
"""
Calculate Gunning Fog index for reference and candidate.
"""
return (textstat.gunning_fog(reference) + textstat.gunning_fog(candidate)) / 2
def coleman_liau_index(reference, candidate):
"""
Calculate Coleman-Liau index for reference and candidate.
"""
return (textstat.coleman_liau_index(reference) + textstat.coleman_liau_index(candidate)) / 2
def automated_readability_index(reference, candidate):
"""
Calculate Automated Readability Index for reference and candidate.
"""
return (textstat.automated_readability_index(reference) + textstat.automated_readability_index(candidate)) / 2
def save_results_to_json(results, path):
"""
Save evaluation results to a JSON file.
"""
with open(path, "w", encoding="utf-8") as f:
json.dump(results, f, indent=4)
def save_results_to_html(results, path):
"""
Save evaluation results to an HTML file.
"""
df = pd.DataFrame(results)
html = df.to_html(
index=False, classes="table table-striped table-hover table-bordered"
)
with open(path, "w", encoding="utf-8") as f:
f.write(
"""
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Evaluation Results</title>
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.5.2/css/bootstrap.min.css">
<style>
body { margin: 20px; }
.table-container { margin-top: 20px; }
h1 { text-align: center; margin-bottom: 20px; }
</style>
</head>
<body>
<div class="container">
<h1>Evaluation Results</h1>
<div class="table-container">
"""
)
f.write(html)
f.write(
"""
</div>
</div>
<script src="https://code.jquery.com/jquery-3.5.1.slim.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/@popperjs/[email protected]/dist/umd/popper.min.js"></script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.5.2/js/bootstrap.min.js"></script>
</body>
</html>
"""
)
def main():
"""
Main function to evaluate JSON files and save results.
"""
rewritten_files = [f for f in os.listdir(REWRITTEN_FOLDER) if f.endswith("_rewritten.json")]
all_results = []
for rewritten_file in rewritten_files:
rewritten_path = os.path.join(REWRITTEN_FOLDER, rewritten_file)
output_file = rewritten_file.replace("_rewritten.json", ".json")
output_path = os.path.join(OUTPUT_FOLDER, output_file)
if os.path.isfile(output_path):
print("\nEvaluating:", output_file)
result = compare_json_files(output_path, rewritten_path)
if result:
all_results.append(result)
save_individual_metrics(output_path, result)
else:
print(f"WARNING: No corresponding file found in 'output' for {rewritten_file}")
save_results_to_json(all_results, RESULTS_JSON_PATH)
save_results_to_html(all_results, RESULTS_HTML_PATH)
print(f"Results saved to {RESULTS_JSON_PATH} and {RESULTS_HTML_PATH}")
if __name__ == "__main__":
main()