-
Notifications
You must be signed in to change notification settings - Fork 0
/
compseq.html
1036 lines (889 loc) · 33.3 KB
/
compseq.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<HTML>
<HEAD>
<TITLE>
EMBOSS: compseq
</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF" text="#000000">
<table align=center border=0 cellspacing=0 cellpadding=0>
<tr><td valign=top>
<A HREF="/" ONMOUSEOVER="self.status='Go to the EMBOSS home page';return true"><img border=0 src="emboss_icon.jpg" alt="" width=150 height=48></a>
</td>
<td align=left valign=middle>
<b><font size="+6">
compseq
</font></b>
</td></tr>
</table>
<br>
<p>
<H2>
Function
</H2>
Count composition of dimer/trimer/etc words in a sequence
<H2>
Description
</H2>
This takes a specified length of sequence and counts the number of
distinct subsequences of that length that there are in the input
sequence(s).
<p>
It can read in the result of a previous compseq analysis and use this
to set the expected frequencies of the subsequences.
<p>
Unless you tell 'compseq' otherwise, it expects each word to be equally
likely. The 'Expected' frequency therefore of any dimer is 1/16 - this
is simply the inverse of the number of possible dimers (AA, AC, AG, AT,
CA, CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, TT).
<p>
Similarly, the 'Expected' frequency of any trimer is 1/64, etc.
<p>
Obviously this is not the case in real sequences - there will be bias in
favour of some words.
<p>
Compseq cannot otherwise guess what the 'Expected' frequency is. You
can, however, tell it what the Expected frequencies are by giving
compseq the output of the analysis of another set of sequences, produced
by a previous compseq run.
<p>
So you take a set of sequences that are representative of the type of
sequence you expect and you run compseq on it to get your expected
sequence frequencies.
<p>
You then take the sequences you wish to investigate, run compseq on them
giving compseq the expected frequencies that you have established,
above. You tell compseq what the file of expected frequencies is by
specifying it with '-infile filename' on the command-line.
<H2>
Usage
</H2>
<b>Here is a sample session with compseq</b>
<p>
To count the frequencies of dinucleotides in a file:
<p>
<p>
<table width="90%"><tr><td bgcolor="#CCFFFF"><pre>
% <b>compseq tembl:x65923 -word 2 result3.comp </b>
Count composition of dimer/trimer/etc words in a sequence
</pre></td></tr></table><p>
<p>
<a href="#input.1">Go to the input files for this example</a><br><a href="#output.1">Go to the output files for this example</a><p><p>
<p>
<b>Example 2</b>
<p>
To count the frequencies of hexanucleotides, without outputting the results of hexanucleotides that do not occur in the sequence:
<p>
<p>
<table width="90%"><tr><td bgcolor="#CCFFFF"><pre>
% <b>compseq tembl:x65923 -word 6 result6.comp -nozero </b>
Count composition of dimer/trimer/etc words in a sequence
</pre></td></tr></table><p>
<p>
<a href="#output.2">Go to the output files for this example</a><p><p>
<p>
<b>Example 3</b>
<p>
To count the frequencies of trinucleotides in frame 2 of a sequence and use a previously prepared compseq output to show the expected frequencies:
<p>
<p>
<table width="90%"><tr><td bgcolor="#CCFFFF"><pre>
% <b>compseq tembl:x65923 -word 3 result3.comp -frame 2 -in prev.comp </b>
Count composition of dimer/trimer/etc words in a sequence
</pre></td></tr></table><p>
<p>
<a href="#input.3">Go to the input files for this example</a><br><a href="#output.3">Go to the output files for this example</a><p><p>
<H2>
Command line arguments
</H2>
<table CELLSPACING=0 CELLPADDING=3 BGCOLOR="#f5f5ff" ><tr><td>
<pre>
Standard (Mandatory) qualifiers:
[-sequence] seqall Sequence(s) filename and optional format, or
reference (input USA)
-word integer [2] This is the size of word (n-mer) to
count.
Thus if you want to count codon frequencies,
you should enter 3 here. (Integer from 1 to
20)
[-outfile] outfile [*.compseq] This is the results file.
Additional (Optional) qualifiers (* if not always prompted):
-infile infile This is a file previously produced by
'compseq' that can be used to set the
expected frequencies of words in this
analysis.
The word size in the current run must be the
same as the one in this results file.
Obviously, you should use a file produced
from protein sequences if you are counting
protein sequence word frequencies, and you
must use one made from nucleotide
frequencies if you are analysing a
nucleotide sequence.
-frame integer [0] The normal behaviour of 'compseq' is to
count the frequencies of all words that
occur by moving a window of length 'word' up
by one each time.
This option allows you to move the window up
by the length of the word each time,
skipping over the intervening words.
You can count only those words that occur in
a single frame of the word by setting this
value to a number other than zero.
If you set it to 1 it will only count the
words in frame 1, 2 will only count the
words in frame 2 and so on. (Integer 0 or
more)
* -[no]ignorebz boolean [Y] The amino acid code B represents
Asparagine or Aspartic acid and the code Z
represents Glutamine or Glutamic acid.
These are not commonly used codes and you
may wish not to count words containing them,
just noting them in the count of 'Other'
words.
* -reverse boolean [N] Set this to be true if you also wish to
also count words in the reverse complement
of a nucleic sequence.
-calcfreq boolean [N] If this is set true then the expected
frequencies of words are calculated from the
observed frequency of single bases or
residues in the sequences.
If you are reporting a word size of 1
(single bases or residues) then there is no
point in using this option because the
calculated expected frequency will be equal
to the observed frequency.
Calculating the expected frequencies like
this will give an approximation of the
expected frequencies that you might get by
using an input file of frequencies produced
by a previous run of this program. If an
input file of expected word frequencies has
been specified then the values from that
file will be used instead of this
calculation of expected frequency from the
sequence, even if 'calcfreq' is set to be
true.
-[no]zerocount boolean [Y] You can make the output results file
much smaller if you do not display the words
with a zero count.
Advanced (Unprompted) qualifiers: (none)
Associated qualifiers:
"-sequence" associated qualifiers
-sbegin1 integer Start of each sequence to be used
-send1 integer End of each sequence to be used
-sreverse1 boolean Reverse (if DNA)
-sask1 boolean Ask for begin/end/reverse
-snucleotide1 boolean Sequence is nucleotide
-sprotein1 boolean Sequence is protein
-slower1 boolean Make lower case
-supper1 boolean Make upper case
-sformat1 string Input sequence format
-sdbname1 string Database name
-sid1 string Entryname
-ufo1 string UFO features
-fformat1 string Features format
-fopenfile1 string Features file name
"-outfile" associated qualifiers
-odirectory2 string Output directory
General qualifiers:
-auto boolean Turn off prompts
-stdout boolean Write standard output
-filter boolean Read standard input, write standard output
-options boolean Prompt for standard and additional values
-debug boolean Write debug output to program.dbg
-verbose boolean Report some/full command line options
-help boolean Report command line options. More
information on associated and general
qualifiers can be found with -help -verbose
-warning boolean Report warnings
-error boolean Report errors
-fatal boolean Report fatal errors
-die boolean Report dying program messages
</pre>
</td></tr></table>
<P>
<table border cellspacing=0 cellpadding=3 bgcolor="#ccccff">
<tr bgcolor="#FFFFCC">
<th align="left" colspan=2>Standard (Mandatory) qualifiers</th>
<th align="left">Allowed values</th>
<th align="left">Default</th>
</tr>
<tr>
<td>[-sequence]<br>(Parameter 1)</td>
<td>Sequence(s) filename and optional format, or reference (input USA)</td>
<td>Readable sequence(s)</td>
<td><b>Required</b></td>
</tr>
<tr>
<td>-word</td>
<td>This is the size of word (n-mer) to count.
Thus if you want to count codon frequencies, you should enter 3 here.</td>
<td>Integer from 1 to 20</td>
<td>2</td>
</tr>
<tr>
<td>[-outfile]<br>(Parameter 2)</td>
<td>This is the results file.</td>
<td>Output file</td>
<td><i><*></i>.compseq</td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=2>Additional (Optional) qualifiers</th>
<th align="left">Allowed values</th>
<th align="left">Default</th>
</tr>
<tr>
<td>-infile</td>
<td>This is a file previously produced by 'compseq' that can be used to set the expected frequencies of words in this analysis.
The word size in the current run must be the same as the one in this results file. Obviously, you should use a file produced from protein sequences if you are counting protein sequence word frequencies, and you must use one made from nucleotide frequencies if you are analysing a nucleotide sequence.</td>
<td>Input file</td>
<td><b>Required</b></td>
</tr>
<tr>
<td>-frame</td>
<td>The normal behaviour of 'compseq' is to count the frequencies of all words that occur by moving a window of length 'word' up by one each time.
This option allows you to move the window up by the length of the word each time, skipping over the intervening words.
You can count only those words that occur in a single frame of the word by setting this value to a number other than zero.
If you set it to 1 it will only count the words in frame 1, 2 will only count the words in frame 2 and so on.</td>
<td>Integer 0 or more</td>
<td>0</td>
</tr>
<tr>
<td>-[no]ignorebz</td>
<td>The amino acid code B represents Asparagine or Aspartic acid and the code Z represents Glutamine or Glutamic acid.
These are not commonly used codes and you may wish not to count words containing them, just noting them in the count of 'Other' words.</td>
<td>Boolean value Yes/No</td>
<td>Yes</td>
</tr>
<tr>
<td>-reverse</td>
<td>Set this to be true if you also wish to also count words in the reverse complement of a nucleic sequence.</td>
<td>Boolean value Yes/No</td>
<td>No</td>
</tr>
<tr>
<td>-calcfreq</td>
<td>If this is set true then the expected frequencies of words are calculated from the observed frequency of single bases or residues in the sequences.
If you are reporting a word size of 1 (single bases or residues) then there is no point in using this option because the calculated expected frequency will be equal to the observed frequency.
Calculating the expected frequencies like this will give an approximation of the expected frequencies that you might get by using an input file of frequencies produced by a previous run of this program. If an input file of expected word frequencies has been specified then the values from that file will be used instead of this calculation of expected frequency from the sequence, even if 'calcfreq' is set to be true.</td>
<td>Boolean value Yes/No</td>
<td>No</td>
</tr>
<tr>
<td>-[no]zerocount</td>
<td>You can make the output results file much smaller if you do not display the words with a zero count.</td>
<td>Boolean value Yes/No</td>
<td>Yes</td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=2>Advanced (Unprompted) qualifiers</th>
<th align="left">Allowed values</th>
<th align="left">Default</th>
</tr>
<tr>
<td colspan=4>(none)</td>
</tr>
</table>
<H2>
Input file format
</H2>
Normal sequence(s) USA.
<p>
<a name="input.1"></a>
<h3>Input files for usage example </h3>
'tembl:x65923' is a sequence entry in the example nucleic acid database 'tembl'
<p>
<p><h3>Database entry: tembl:x65923</h3>
<table width="90%"><tr><td bgcolor="#FFCCFF">
<pre>
ID X65923; SV 1; linear; mRNA; STD; HUM; 518 BP.
XX
AC X65923;
XX
DT 13-MAY-1992 (Rel. 31, Created)
DT 18-APR-2005 (Rel. 83, Last updated, Version 11)
XX
DE H.sapiens fau mRNA
XX
KW fau gene.
XX
OS Homo sapiens (human)
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia;
OC Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae;
OC Homo.
XX
RN [1]
RP 1-518
RA Michiels L.M.R.;
RT ;
RL Submitted (29-APR-1992) to the EMBL/GenBank/DDBJ databases.
RL L.M.R. Michiels, University of Antwerp, Dept of Biochemistry,
RL Universiteisplein 1, 2610 Wilrijk, BELGIUM
XX
RN [2]
RP 1-518
RX PUBMED; 8395683.
RA Michiels L., Van der Rauwelaert E., Van Hasselt F., Kas K., Merregaert J.;
RT " fau cDNA encodes a ubiquitin-like-S30 fusion protein and is expressed as
RT an antisense sequences in the Finkel-Biskis-Reilly murine sarcoma virus";
RL Oncogene 8(9):2537-2546(1993).
XX
DR H-InvDB; HIT000322806.
XX
FH Key Location/Qualifiers
FH
FT source 1..518
FT /organism="Homo sapiens"
FT /chromosome="11q"
FT /map="13"
FT /mol_type="mRNA"
FT /clone_lib="cDNA"
FT /clone="pUIA 631"
FT /tissue_type="placenta"
FT /db_xref="taxon:9606"
FT misc_feature 57..278
FT /note="ubiquitin like part"
FT CDS 57..458
FT /gene="fau"
FT /db_xref="GDB:135476"
FT /db_xref="GOA:P35544"
FT /db_xref="GOA:P62861"
FT /db_xref="HGNC:3597"
FT /db_xref="UniProtKB/Swiss-Prot:P35544"
FT /db_xref="UniProtKB/Swiss-Prot:P62861"
FT /protein_id="CAA46716.1"
FT /translation="MQLFVRAQELHTFEVTGQETVAQIKAHVASLEGIAPEDQVVLLAG
FT APLEDEATLGQCGVEALTTLEVAGRMLGGKVHGSLARAGKVRGQTPKVAKQEKKKKKTG
FT RAKRRMQYNRRFVNVVPTFGKKKGPNANS"
FT misc_feature 98..102
FT /note="nucleolar localization signal"
FT misc_feature 279..458
FT /note="S30 part"
FT polyA_signal 484..489
FT polyA_site 509
XX
SQ Sequence 518 BP; 125 A; 139 C; 148 G; 106 T; 0 other;
ttcctctttc tcgactccat cttcgcggta gctgggaccg ccgttcagtc gccaatatgc 60
agctctttgt ccgcgcccag gagctacaca ccttcgaggt gaccggccag gaaacggtcg 120
cccagatcaa ggctcatgta gcctcactgg agggcattgc cccggaagat caagtcgtgc 180
tcctggcagg cgcgcccctg gaggatgagg ccactctggg ccagtgcggg gtggaggccc 240
tgactaccct ggaagtagca ggccgcatgc ttggaggtaa agttcatggt tccctggccc 300
gtgctggaaa agtgagaggt cagactccta aggtggccaa acaggagaag aagaagaaga 360
agacaggtcg ggctaagcgg cggatgcagt acaaccggcg ctttgtcaac gttgtgccca 420
cctttggcaa gaagaagggc cccaatgcca actcttaagt cttttgtaat tctggctttc 480
tctaataaaa aagccactta gttcagtcaa aaaaaaaa 518
//
</pre>
</td></tr></table><p>
<a name="input.3"></a>
<h3>Input files for usage example 3</h3>
<p><h3>File: prev.comp</h3>
<table width="90%"><tr><td bgcolor="#FFCCFF">
<pre>
#
# Output from 'compseq'
#
# The Expected frequencies are calculated on the (false) assumption that every
# word has equal frequency.
#
# The input sequences are:
# HSFAU
Word size 3
Total count 516
#
# Word Obs Count Obs Frequency Exp Frequency Obs/Exp Frequency
#
AAA 17 0.0329457 0.0156250 2.1085271
AAC 5 0.0096899 0.0156250 0.6201550
AAG 18 0.0348837 0.0156250 2.2325581
AAT 4 0.0077519 0.0156250 0.4961240
ACA 5 0.0096899 0.0156250 0.6201550
ACC 6 0.0116279 0.0156250 0.7441860
ACG 2 0.0038760 0.0156250 0.2480620
ACT 7 0.0135659 0.0156250 0.8682171
AGA 12 0.0232558 0.0156250 1.4883721
AGC 7 0.0135659 0.0156250 0.8682171
AGG 16 0.0310078 0.0156250 1.9844961
AGT 10 0.0193798 0.0156250 1.2403101
ATA 2 0.0038760 0.0156250 0.2480620
ATC 3 0.0058140 0.0156250 0.3720930
ATG 7 0.0135659 0.0156250 0.8682171
ATT 2 0.0038760 0.0156250 0.2480620
CAA 10 0.0193798 0.0156250 1.2403101
CAC 6 0.0116279 0.0156250 0.7441860
CAG 13 0.0251938 0.0156250 1.6124031
CAT 5 0.0096899 0.0156250 0.6201550
CCA 12 0.0232558 0.0156250 1.4883721
CCC 13 0.0251938 0.0156250 1.6124031
CCG 8 0.0155039 0.0156250 0.9922481
CCT 10 0.0193798 0.0156250 1.2403101
CGA 2 0.0038760 0.0156250 0.2480620
CGC 10 0.0193798 0.0156250 1.2403101
CGG 9 0.0174419 0.0156250 1.1162791
CGT 4 0.0077519 0.0156250 0.4961240
CTA 5 0.0096899 0.0156250 0.6201550
CTC 11 0.0213178 0.0156250 1.3643411
CTG 10 0.0193798 0.0156250 1.2403101
CTT 11 0.0213178 0.0156250 1.3643411
GAA 11 0.0213178 0.0156250 1.3643411
GAC 6 0.0116279 0.0156250 0.7441860
GAG 10 0.0193798 0.0156250 1.2403101
GAT 4 0.0077519 0.0156250 0.4961240
GCA 7 0.0135659 0.0156250 0.8682171
GCC 18 0.0348837 0.0156250 2.2325581
GCG 8 0.0155039 0.0156250 0.9922481
GCT 10 0.0193798 0.0156250 1.2403101
GGA 13 0.0251938 0.0156250 1.6124031
GGC 17 0.0329457 0.0156250 2.1085271
GGG 7 0.0135659 0.0156250 0.8682171
GGT 9 0.0174419 0.0156250 1.1162791
GTA 6 0.0116279 0.0156250 0.7441860
GTC 9 0.0174419 0.0156250 1.1162791
GTG 8 0.0155039 0.0156250 0.9922481
GTT 5 0.0096899 0.0156250 0.6201550
TAA 7 0.0135659 0.0156250 0.8682171
TAC 3 0.0058140 0.0156250 0.3720930
TAG 4 0.0077519 0.0156250 0.4961240
TAT 1 0.0019380 0.0156250 0.1240310
TCA 10 0.0193798 0.0156250 1.2403101
TCC 6 0.0116279 0.0156250 0.7441860
TCG 7 0.0135659 0.0156250 0.8682171
TCT 10 0.0193798 0.0156250 1.2403101
TGA 4 0.0077519 0.0156250 0.4961240
TGC 9 0.0174419 0.0156250 1.1162791
TGG 14 0.0271318 0.0156250 1.7364341
TGT 5 0.0096899 0.0156250 0.6201550
TTA 2 0.0038760 0.0156250 0.2480620
TTC 10 0.0193798 0.0156250 1.2403101
TTG 7 0.0135659 0.0156250 0.8682171
TTT 7 0.0135659 0.0156250 0.8682171
Other 0 0.0000000 0.0000000 10000000000.0000000
</pre>
</td></tr></table><p>
<H2>
Output file format
</H2>
The output format consists of:
<p>
Header information and comments are preceeded by a '#' character
at the start of the line.
<p>
The Word size and the Total count are then given on separate lines,
<p>
The headers of the columns of results are preceeded by a '#'
<p>
The results columns are: the sub-sequence word, the observed
frequency, the expected frequency (which will be read from the input
file if one is given, else it is a simple inverse of the number of words
of the size specified that can be constructed), the ratio of the
observed to expected frequency.
<p>
After a blank line at the end, the results of 'Other' words is
given - this is the number of words with a sequence which has
IUPAC ambiguity codes or other unusual characters in.
<p>
<a name="output.1"></a>
<h3>Output files for usage example </h3>
<p><h3>File: result3.comp</h3>
<table width="90%"><tr><td bgcolor="#CCFFCC">
<pre>
#
# Output from 'compseq'
#
# The Expected frequencies are calculated on the (false) assumption that every
# word has equal frequency.
#
# The input sequences are:
# X65923
Word size 2
Total count 517
#
# Word Obs Count Obs Frequency Exp Frequency Obs/Exp Frequency
#
AA 45 0.0870406 0.0625000 1.3926499
AC 20 0.0386847 0.0625000 0.6189555
AG 45 0.0870406 0.0625000 1.3926499
AT 14 0.0270793 0.0625000 0.4332689
CA 34 0.0657640 0.0625000 1.0522244
CC 43 0.0831721 0.0625000 1.3307544
CG 25 0.0483559 0.0625000 0.7736944
CT 37 0.0715667 0.0625000 1.1450677
GA 31 0.0599613 0.0625000 0.9593810
GC 43 0.0831721 0.0625000 1.3307544
GG 46 0.0889749 0.0625000 1.4235977
GT 28 0.0541586 0.0625000 0.8665377
TA 15 0.0290135 0.0625000 0.4642166
TC 33 0.0638298 0.0625000 1.0212766
TG 32 0.0618956 0.0625000 0.9903288
TT 26 0.0502901 0.0625000 0.8046422
Other 0 0.0000000 0.0000000 10000000000.0000000
</pre>
</td></tr></table><p>
<a name="output.2"></a>
<h3>Output files for usage example 2</h3>
<p><h3>File: result6.comp</h3>
<table width="90%"><tr><td bgcolor="#CCFFCC">
<pre>
#
# Output from 'compseq'
#
# Words with a frequency of zero are not reported.
# The Expected frequencies are calculated on the (false) assumption that every
# word has equal frequency.
#
# The input sequences are:
# X65923
Word size 6
Total count 513
#
# Word Obs Count Obs Frequency Exp Frequency Obs/Exp Frequency
#
AAAAAA 6 0.0116959 0.0002441 47.9064327
AAAAAG 1 0.0019493 0.0002441 7.9844055
AAAAGC 1 0.0019493 0.0002441 7.9844055
AAAAGT 1 0.0019493 0.0002441 7.9844055
AAACAG 1 0.0019493 0.0002441 7.9844055
AAACGG 1 0.0019493 0.0002441 7.9844055
AAAGCC 1 0.0019493 0.0002441 7.9844055
AAAGTG 1 0.0019493 0.0002441 7.9844055
AAAGTT 1 0.0019493 0.0002441 7.9844055
AACAGG 1 0.0019493 0.0002441 7.9844055
AACCGG 1 0.0019493 0.0002441 7.9844055
AACGGT 1 0.0019493 0.0002441 7.9844055
AACGTT 1 0.0019493 0.0002441 7.9844055
AACTCT 1 0.0019493 0.0002441 7.9844055
AAGAAG 6 0.0116959 0.0002441 47.9064327
AAGACA 1 0.0019493 0.0002441 7.9844055
AAGATC 1 0.0019493 0.0002441 7.9844055
AAGCCA 1 0.0019493 0.0002441 7.9844055
AAGCGG 1 0.0019493 0.0002441 7.9844055
AAGGCT 1 0.0019493 0.0002441 7.9844055
AAGGGC 1 0.0019493 0.0002441 7.9844055
AAGGTG 1 0.0019493 0.0002441 7.9844055
AAGTAG 1 0.0019493 0.0002441 7.9844055
AAGTCG 1 0.0019493 0.0002441 7.9844055
AAGTCT 1 0.0019493 0.0002441 7.9844055
AAGTGA 1 0.0019493 0.0002441 7.9844055
AAGTTC 1 0.0019493 0.0002441 7.9844055
AATAAA 1 0.0019493 0.0002441 7.9844055
AATATG 1 0.0019493 0.0002441 7.9844055
AATGCC 1 0.0019493 0.0002441 7.9844055
AATTCT 1 0.0019493 0.0002441 7.9844055
ACAACC 1 0.0019493 0.0002441 7.9844055
ACACAC 1 0.0019493 0.0002441 7.9844055
<font color=red> [Part of this file has been deleted for brevity]</font>
TGAGGC 1 0.0019493 0.0002441 7.9844055
TGCAGC 1 0.0019493 0.0002441 7.9844055
TGCAGT 1 0.0019493 0.0002441 7.9844055
TGCCAA 1 0.0019493 0.0002441 7.9844055
TGCCCA 1 0.0019493 0.0002441 7.9844055
TGCCCC 1 0.0019493 0.0002441 7.9844055
TGCGGG 1 0.0019493 0.0002441 7.9844055
TGCTCC 1 0.0019493 0.0002441 7.9844055
TGCTGG 1 0.0019493 0.0002441 7.9844055
TGCTTG 1 0.0019493 0.0002441 7.9844055
TGGAAA 1 0.0019493 0.0002441 7.9844055
TGGAAG 1 0.0019493 0.0002441 7.9844055
TGGAGG 4 0.0077973 0.0002441 31.9376218
TGGCAA 1 0.0019493 0.0002441 7.9844055
TGGCAG 1 0.0019493 0.0002441 7.9844055
TGGCCA 1 0.0019493 0.0002441 7.9844055
TGGCCC 1 0.0019493 0.0002441 7.9844055
TGGCTT 1 0.0019493 0.0002441 7.9844055
TGGGAC 1 0.0019493 0.0002441 7.9844055
TGGGCC 1 0.0019493 0.0002441 7.9844055
TGGTTC 1 0.0019493 0.0002441 7.9844055
TGTAAT 1 0.0019493 0.0002441 7.9844055
TGTAGC 1 0.0019493 0.0002441 7.9844055
TGTCAA 1 0.0019493 0.0002441 7.9844055
TGTCCG 1 0.0019493 0.0002441 7.9844055
TGTGCC 1 0.0019493 0.0002441 7.9844055
TTAAGT 1 0.0019493 0.0002441 7.9844055
TTAGTT 1 0.0019493 0.0002441 7.9844055
TTCAGT 2 0.0038986 0.0002441 15.9688109
TTCATG 1 0.0019493 0.0002441 7.9844055
TTCCCT 1 0.0019493 0.0002441 7.9844055
TTCCTC 1 0.0019493 0.0002441 7.9844055
TTCGAG 1 0.0019493 0.0002441 7.9844055
TTCGCG 1 0.0019493 0.0002441 7.9844055
TTCTCG 1 0.0019493 0.0002441 7.9844055
TTCTCT 1 0.0019493 0.0002441 7.9844055
TTCTGG 1 0.0019493 0.0002441 7.9844055
TTGCCC 1 0.0019493 0.0002441 7.9844055
TTGGAG 1 0.0019493 0.0002441 7.9844055
TTGGCA 1 0.0019493 0.0002441 7.9844055
TTGTAA 1 0.0019493 0.0002441 7.9844055
TTGTCA 1 0.0019493 0.0002441 7.9844055
TTGTCC 1 0.0019493 0.0002441 7.9844055
TTGTGC 1 0.0019493 0.0002441 7.9844055
TTTCTC 2 0.0038986 0.0002441 15.9688109
TTTGGC 1 0.0019493 0.0002441 7.9844055
TTTGTA 1 0.0019493 0.0002441 7.9844055
TTTGTC 2 0.0038986 0.0002441 15.9688109
TTTTGT 1 0.0019493 0.0002441 7.9844055
Other 0 0.0000000 0.0000000 10000000000.0000000
</pre>
</td></tr></table><p>
<a name="output.3"></a>
<h3>Output files for usage example 3</h3>
<p><h3>File: result3.comp</h3>
<table width="90%"><tr><td bgcolor="#CCFFCC">
<pre>
#
# Output from 'compseq'
#
# Only words in frame 2 will be counted.
# The Expected frequencies are taken from the file: ../../data/prev.comp
#
# The input sequences are:
# X65923
Word size 3
Total count 172
#
# Word Obs Count Obs Frequency Exp Frequency Obs/Exp Frequency
#
AAA 7 0.0406977 0.0329457 1.2352955
AAC 3 0.0174419 0.0096899 1.8000042
AAG 11 0.0639535 0.0348837 1.8333344
AAT 3 0.0174419 0.0077519 2.2500110
ACA 1 0.0058140 0.0096899 0.6000014
ACC 4 0.0232558 0.0116279 2.0000012
ACG 1 0.0058140 0.0038760 1.4999880
ACT 3 0.0174419 0.0135659 1.2857135
AGA 1 0.0058140 0.0232558 0.2500002
AGC 2 0.0116279 0.0135659 0.8571423
AGG 0 0.0000000 0.0310078 0.0000000
AGT 0 0.0000000 0.0193798 0.0000000
ATA 0 0.0000000 0.0038760 0.0000000
ATC 1 0.0058140 0.0058140 0.9999920
ATG 3 0.0174419 0.0135659 1.2857135
ATT 1 0.0058140 0.0038760 1.4999880
CAA 1 0.0058140 0.0193798 0.3000007
CAC 2 0.0116279 0.0116279 1.0000006
CAG 9 0.0523256 0.0251938 2.0769229
CAT 3 0.0174419 0.0096899 1.8000042
CCA 0 0.0000000 0.0232558 0.0000000
CCC 3 0.0174419 0.0251938 0.6923076
CCG 1 0.0058140 0.0155039 0.3749994
CCT 2 0.0116279 0.0193798 0.6000014
CGA 1 0.0058140 0.0038760 1.4999880
CGC 5 0.0290698 0.0193798 1.5000035
CGG 4 0.0232558 0.0174419 1.3333303
CGT 2 0.0116279 0.0077519 1.5000074
CTA 1 0.0058140 0.0096899 0.6000014
CTC 4 0.0232558 0.0213178 1.0909106
CTG 7 0.0406977 0.0193798 2.1000049
CTT 3 0.0174419 0.0213178 0.8181829
GAA 3 0.0174419 0.0213178 0.8181829
GAC 1 0.0058140 0.0116279 0.5000003
GAG 7 0.0406977 0.0193798 2.1000049
GAT 2 0.0116279 0.0077519 1.5000074
GCA 2 0.0116279 0.0135659 0.8571423
GCC 10 0.0581395 0.0348837 1.6666677
GCG 1 0.0058140 0.0155039 0.3749994
GCT 3 0.0174419 0.0193798 0.9000021
GGA 2 0.0116279 0.0251938 0.4615384
GGC 8 0.0465116 0.0329457 1.4117663
GGG 1 0.0058140 0.0135659 0.4285712
GGT 5 0.0290698 0.0174419 1.6666629
GTA 2 0.0116279 0.0116279 1.0000006
GTC 6 0.0348837 0.0174419 1.9999955
GTG 6 0.0348837 0.0155039 2.2499965
GTT 3 0.0174419 0.0096899 1.8000042
TAA 3 0.0174419 0.0135659 1.2857135
TAC 1 0.0058140 0.0058140 0.9999920
TAG 0 0.0000000 0.0077519 0.0000000
TAT 0 0.0000000 0.0019380 0.0000000
TCA 3 0.0174419 0.0193798 0.9000021
TCC 1 0.0058140 0.0116279 0.5000003
TCG 0 0.0000000 0.0135659 0.0000000
TCT 3 0.0174419 0.0193798 0.9000021
TGA 0 0.0000000 0.0077519 0.0000000
TGC 1 0.0058140 0.0174419 0.3333326
TGG 1 0.0058140 0.0271318 0.2142856
TGT 1 0.0058140 0.0096899 0.6000014
TTA 1 0.0058140 0.0038760 1.4999880
TTC 1 0.0058140 0.0193798 0.3000007
TTG 0 0.0000000 0.0135659 0.0000000
TTT 5 0.0290698 0.0135659 2.1428558
Other 0 0.0000000 0.0000000 10000000000.0000000
</pre>
</td></tr></table><p>
<H2>
Data files
</H2>
The input data file is not required.
<p>
The input data file format is exactly the same as the output
file format.
<p>
It expects to read in a previous output file of this program.
An error is produced if the word size of the current compseq job
and that of the output file being read in are different.
<H2>
Notes
</H2>
The results are held in an array in memory before being written
to a file. For large values of wordsize, you may run out of memory.
<p>
You can produce very large output files if you choose large values
of wordsize.
<H2>
References
</H2>
None.
<H2>
Warnings
</H2>
If you use large word-sizes (over about 7 for nucleic, 5 for protein)
you will use huge amounts of memory.
<H2>
Diagnostic Error Messages
</H2>
<dl>
<dt>"The word size is too large for the data structure available."
</dt><dd>You chose a word size that cannot be stored by the program.
<dt>"Insufficient memory - aborting."
</dt><dd>You do not have enough memory - use a machine with more memory.
<dt>"The word size you are counting (n) is different to the word
size in the file of expected frequencies (n)."
</dt><dd>You chose different word sizes in the run of compseq that produced
your results file used to display the expected word frequencies
to the word size used in this run of compseq.
<dt>"The 'Word size' line was not found, instead found:"
</dt><dd>You appear to be trying to read a corrupted compseq results file
</dl>
<H2>
Exit status
</H2>
It always exits with status 0 unless one of the above error conditions
is found
<H2>
Known bugs
</H2>
This program can use a large amount of memory is you specify a large
word size (7 or above). This may impact the behaviour of other programs
on your machine.
<p>
If you run out of memory, you may see the program crash with a generic
error message that will be specific to your machine's operating system,
but will probably be a warning about writing to memory that the program
does not own (eg "Segmentation fault" on a Solaris machine)
<p>
This is not a bug, it is a feature of the way this program grabs large
amounts of memory.
<h2><a name="See also">See also</a></h2>
<table border cellpadding=4 bgcolor="#FFFFF0">
<tr><th>Program name</th><th>Description</th></tr>
<tr>
<td><a href="backtranambig.html">backtranambig</a></td>
<td>Back translate a protein sequence to ambiguous codons</td>
</tr>
<tr>
<td><a href="backtranseq.html">backtranseq</a></td>
<td>Back translate a protein sequence</td>
</tr>
<tr>
<td><a href="banana.html">banana</a></td>
<td>Bending and curvature plot in B-DNA</td>
</tr>
<tr>
<td><a href="btwisted.html">btwisted</a></td>
<td>Calculates the twisting in a B-DNA sequence</td>
</tr>
<tr>
<td><a href="chaos.html">chaos</a></td>
<td>Create a chaos game representation plot for a sequence</td>
</tr>
<tr>
<td><a href="charge.html">charge</a></td>
<td>Protein charge plot</td>
</tr>
<tr>
<td><a href="checktrans.html">checktrans</a></td>
<td>Reports STOP codons and ORF statistics of a protein</td>
</tr>
<tr>
<td><a href="dan.html">dan</a></td>
<td>Calculates DNA RNA/DNA melting temperature</td>
</tr>
<tr>
<td><a href="emowse.html">emowse</a></td>
<td>Protein identification by mass spectrometry</td>
</tr>
<tr>
<td><a href="freak.html">freak</a></td>
<td>Residue/base frequency table or plot</td>
</tr>
<tr>
<td><a href="iep.html">iep</a></td>
<td>Calculates the isoelectric point of a protein</td>
</tr>
<tr>
<td><a href="isochore.html">isochore</a></td>
<td>Plots isochores in large DNA sequences</td>
</tr>
<tr>
<td><a href="mwcontam.html">mwcontam</a></td>
<td>Shows molwts that match across a set of files</td>
</tr>
<tr>
<td><a href="mwfilter.html">mwfilter</a></td>
<td>Filter noisy molwts from mass spec output</td>
</tr>
<tr>
<td><a href="octanol.html">octanol</a></td>
<td>Displays protein hydropathy</td>
</tr>
<tr>
<td><a href="pepinfo.html">pepinfo</a></td>
<td>Plots simple amino acid properties in parallel</td>
</tr>
<tr>
<td><a href="pepstats.html">pepstats</a></td>
<td>Protein statistics</td>
</tr>
<tr>
<td><a href="pepwindow.html">pepwindow</a></td>
<td>Displays protein hydropathy</td>
</tr>
<tr>
<td><a href="pepwindowall.html">pepwindowall</a></td>
<td>Displays protein hydropathy of a set of sequences</td>
</tr>
<tr>
<td><a href="sirna.html">sirna</a></td>
<td>Finds siRNA duplexes in mRNA</td>
</tr>
<tr>
<td><a href="wordcount.html">wordcount</a></td>
<td>Counts words of a specified size in a DNA sequence</td>
</tr>
</table>
<H2>
Author(s)
</H2>