-
Notifications
You must be signed in to change notification settings - Fork 0
/
edialign.html
910 lines (702 loc) · 27.2 KB
/
edialign.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
<HTML>
<HEAD>
<TITLE>
EMBOSS: edialign
</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF" text="#000000">
<table align=center border=0 cellspacing=0 cellpadding=0>
<tr><td valign=top>
<A HREF="/" ONMOUSEOVER="self.status='Go to the EMBOSS home page';return true"><img border=0 src="emboss_icon.jpg" alt="" width=150 height=48></a>
</td>
<td align=left valign=middle>
<b><font size="+6">
edialign
</font></b>
</td></tr>
</table>
<br>
<p>
<H2>
Function
</H2>
Local multiple alignment of sequences
<!--
DON'T WRITE ANYTHING HERE.
IT IS DONE FOR YOU.
-->
<H2>
Description
</H2>
<b>edialign</b> is an EMBOSS version of the program DIALIGN2 by B.
Morgenstern. It takes as input nucleic acid or protein sequences and
produces as output a multiple sequence alignment. The sequences need
not be similar over their complete length, since the program
constructs alignments from gapfree pairs of similar segments of the
sequences. Such segment pairs are referred to as "diagonals". If
(possibly) coding nucleic acid sequences are to be aligned, <b>edialign</b>
can optionally translate the compared "nucleic acid segments" to
"peptide segments", or even perform comparisons at both nucleic acid
and protein levels, so as to increase the sensitivity of the
comparison.
<H2>
Algorithm
</H2>
For a complete explanation of the algorithm, see the references. In short :
<p>
As described in our papers, the program DIALIGN constructs alignments
from gapfree pairs of similar segments of the sequences. Such segment
pairs are referred to as "diagonals". Every possible diagonal is
given a so-called weight reflecting the degree of similarity among the
two segments involved. The overall score of an alignment is then
defined as the sum of weights of the diagonals it consists of and the
program tries to find an alignment with maximum score -- in other
words : the program tries to find a consistent collection of diagonals
with maximum sum of weights. This novel scoring scheme for alignments
is the basic difference between DIALIGN and other global or local
alignment methods. Note that DIALIGN does not employ any kind of gap
penalty.
<p>
It is possible to use a threshold T for the quality of the
diagonals. In this case, a diagonal is considered for alignment only
if its "weight" exceeds this threshold. Regions of lower similarity
are ignored. In the first version of the program (DIALIGN 1), this
threshold was in many situations absolutely necessary to obtain
meaningful alignments. By contrast, DIALIGN 2 should produce
reasonable alignments without a threshold, i.e. with T = 0. This is
the most important difference between DIALIGN 2 and the first version
of the program. Nevertheless, it is still possible to use a positive
threshold T to filter out regions of lower significance and to include
only high scoring diagonals into the alignment.
<p>
The use of overlap weights improves the sensitivity of the program if
multiple sequences are aligned but it also increases the running time,
especially if large numbers of sequences are aligned. By default,
"overlap weights" are used if up to 35 sequences are aligned but
switched off for larger data sets.
<p>
If (possibly) coding nucleic acid sequences are to be aligned, DIALIGN
optionally translates the compared "nucleic acid segments" to "peptide
segments" according to the genetic code -- without presupposing any of
the three possible reading frames, so all combinations of reading
frames get checked for significant similarity. If this option is used,
the similarity among segments will be assessed on the "peptide level"
rather than on the "nucleic acid level".
<p>
For the levels of sequence similarity, release 2.2 of DIALIGN has two
additional options:
<ul>
<li>
It can measure the similarity among segment pairs at both levels of
similarity (nucleotide-level and peptide-level similarity). The score
of a fragment is based on whatever similarity is stronger. As a
result, the program can now produce mixed alignments that contain both
types of fragments. Fragments with stronger similarity at the
"nucleotide level" are referred to as N-fragments whereas fragments
with stronger similarity a the peptide level are called P-fragments.
<li>
If the translation or mixed alignment option is used, it is possible
to consider the reverse complements of segments, too. In this case,
both the original segments and their reverse complements are
translated and both pairs of implied "peptide segments" are
compared. This option is useful if DNA sequences contain coding
regions not only on the "Watson strand" but also on the "Crick
strand".
</ul>
The score that DIALIGN assigns to a fragment is based on the
probability to find a fragment of the same respective length and
number of matches (or BLOSUM values, if the translation option is
used) in random sequences of the same length as the input
sequences. If long genomic sequences are aligned, an iterative
procedure can be applied where the program first looks for fragments
with strong similarity. In subsequent steps, regions between these
fragments are realigned. Here, the score of a fragment is based on
random occurrence in these regions between the previously aligned
segment pairs.
<H2>
Usage
</H2>
<!--
Example usage, as run from the command-line.
Many examples illustrating different behaviours is good.
-->
<b>Here is a sample session with edialign</b>
<p>
<p>
<table width="90%"><tr><td bgcolor="#CCFFFF"><pre>
% <b>edialign </b>
Local multiple alignment of sequences
Input sequence set: <b>vtest.seq</b>
Output file [vtest.edialign]: <b></b>
(gapped) output sequence(s) [vtest.fasta]: <b></b>
</pre></td></tr></table><p>
<p>
<a href="#input.1">Go to the input files for this example</a><br><a href="#output.1">Go to the output files for this example</a><p><p>
<H2>
Command line arguments
</H2>
<table CELLSPACING=0 CELLPADDING=3 BGCOLOR="#f5f5ff" ><tr><td>
<pre>
Standard (Mandatory) qualifiers:
[-sequences] seqset Sequence set filename and optional format,
or reference (input USA)
[-outfile] outfile [*.edialign] Output file name
[-outseq] seqoutall [<sequence>.<format>] (Aligned) sequence
set(s) filename and optional format (output
USA)
Additional (Optional) qualifiers (* if not always prompted):
* -nucmode menu [n] Nucleic acid sequence alignment mode
(simple, translated or mixed) (Values: n
(simple); nt (translation); ma (mixed
alignments))
* -revcomp boolean [N] Also consider the reverse complement
-overlapw selection [default (when Nseq =< 35)] By default
overlap weights are used when Nseq =<35 but
you can set this to 'yes' or 'no'
-linkage menu [UPGMA] Clustering method to construct
sequence tree (UPGMA, minimum linkage or
maximum linkage) (Values: UPGMA (UPGMA); max
(maximum linkage); min (minimum linkage))
-maxfragl integer [40] Maximum fragment length (Integer 0 or
more)
* -fragmat boolean [N] Consider only N-fragment pairs that
start with two matches
* -fragsim integer [4] Consider only P-fragment pairs if first
amino acid or codon pair has similarity
score of at least n (Integer 0 or more)
-itscore boolean [N] Use iterative score
-threshold float [0.0] Threshold for considering diagonal for
alignment (Number 0.000 or more)
Advanced (Unprompted) qualifiers:
-mask boolean [N] Replace unaligned characters by stars
'*' rather then putting them in lowercase
-dostars boolean [N] Activate writing of stars instead of
numbers
-starnum integer [4] Put up to n stars '*' instead of digits
0-9 to indicate level of conservation
(Integer 0 or more)
Associated qualifiers:
"-sequences" associated qualifiers
-sbegin1 integer Start of each sequence to be used
-send1 integer End of each sequence to be used
-sreverse1 boolean Reverse (if DNA)
-sask1 boolean Ask for begin/end/reverse
-snucleotide1 boolean Sequence is nucleotide
-sprotein1 boolean Sequence is protein
-slower1 boolean Make lower case
-supper1 boolean Make upper case
-sformat1 string Input sequence format
-sdbname1 string Database name
-sid1 string Entryname
-ufo1 string UFO features
-fformat1 string Features format
-fopenfile1 string Features file name
"-outfile" associated qualifiers
-odirectory2 string Output directory
"-outseq" associated qualifiers
-osformat3 string Output seq format
-osextension3 string File name extension
-osname3 string Base file name
-osdirectory3 string Output directory
-osdbname3 string Database name to add
-ossingle3 boolean Separate file for each entry
-oufo3 string UFO features
-offormat3 string Features format
-ofname3 string Features file name
-ofdirectory3 string Output directory
General qualifiers:
-auto boolean Turn off prompts
-stdout boolean Write standard output
-filter boolean Read standard input, write standard output
-options boolean Prompt for standard and additional values
-debug boolean Write debug output to program.dbg
-verbose boolean Report some/full command line options
-help boolean Report command line options. More
information on associated and general
qualifiers can be found with -help -verbose
-warning boolean Report warnings
-error boolean Report errors
-fatal boolean Report fatal errors
-die boolean Report dying program messages
</pre>
</td></tr></table>
<P>
<table border cellspacing=0 cellpadding=3 bgcolor="#ccccff">
<tr bgcolor="#FFFFCC">
<th align="left" colspan=2>Standard (Mandatory) qualifiers</th>
<th align="left">Allowed values</th>
<th align="left">Default</th>
</tr>
<tr>
<td>[-sequences]<br>(Parameter 1)</td>
<td>Sequence set filename and optional format, or reference (input USA)</td>
<td>Readable set of sequences</td>
<td><b>Required</b></td>
</tr>
<tr>
<td>[-outfile]<br>(Parameter 2)</td>
<td>Output file name</td>
<td>Output file</td>
<td><i><*></i>.edialign</td>
</tr>
<tr>
<td>[-outseq]<br>(Parameter 3)</td>
<td>(Aligned) sequence set(s) filename and optional format (output USA)</td>
<td>Writeable sequence(s)</td>
<td><i><*></i>.<i>format</i></td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=2>Additional (Optional) qualifiers</th>
<th align="left">Allowed values</th>
<th align="left">Default</th>
</tr>
<tr>
<td>-nucmode</td>
<td>Nucleic acid sequence alignment mode (simple, translated or mixed)</td>
<td><table><tr><td>n</td> <td><i>(simple)</i></td></tr><tr><td>nt</td> <td><i>(translation)</i></td></tr><tr><td>ma</td> <td><i>(mixed alignments)</i></td></tr></table></td>
<td>n</td>
</tr>
<tr>
<td>-revcomp</td>
<td>Also consider the reverse complement</td>
<td>Boolean value Yes/No</td>
<td>No</td>
</tr>
<tr>
<td>-overlapw</td>
<td>By default overlap weights are used when Nseq =<35 but you can set this to 'yes' or 'no'</td>
<td>Choose from selection list of values</td>
<td>default (when Nseq =< 35)</td>
</tr>
<tr>
<td>-linkage</td>
<td>Clustering method to construct sequence tree (UPGMA, minimum linkage or maximum linkage)</td>
<td><table><tr><td>UPGMA</td> <td><i>(UPGMA)</i></td></tr><tr><td>max</td> <td><i>(maximum linkage)</i></td></tr><tr><td>min</td> <td><i>(minimum linkage)</i></td></tr></table></td>
<td>UPGMA</td>
</tr>
<tr>
<td>-maxfragl</td>
<td>Maximum fragment length</td>
<td>Integer 0 or more</td>
<td>40</td>
</tr>
<tr>
<td>-fragmat</td>
<td>Consider only N-fragment pairs that start with two matches</td>
<td>Boolean value Yes/No</td>
<td>No</td>
</tr>
<tr>
<td>-fragsim</td>
<td>Consider only P-fragment pairs if first amino acid or codon pair has similarity score of at least n</td>
<td>Integer 0 or more</td>
<td>4</td>
</tr>
<tr>
<td>-itscore</td>
<td>Use iterative score</td>
<td>Boolean value Yes/No</td>
<td>No</td>
</tr>
<tr>
<td>-threshold</td>
<td>Threshold for considering diagonal for alignment</td>
<td>Number 0.000 or more</td>
<td>0.0</td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=2>Advanced (Unprompted) qualifiers</th>
<th align="left">Allowed values</th>
<th align="left">Default</th>
</tr>
<tr>
<td>-mask</td>
<td>Replace unaligned characters by stars '*' rather then putting them in lowercase</td>
<td>Boolean value Yes/No</td>
<td>No</td>
</tr>
<tr>
<td>-dostars</td>
<td>Activate writing of stars instead of numbers</td>
<td>Boolean value Yes/No</td>
<td>No</td>
</tr>
<tr>
<td>-starnum</td>
<td>Put up to n stars '*' instead of digits 0-9 to indicate level of conservation</td>
<td>Integer 0 or more</td>
<td>4</td>
</tr>
</table>
<!--
DON'T WRITE ANYTHING HERE.
IT IS DONE FOR YOU.
-->
<H2>
Input file format
</H2>
<!--
This includes example input file formats.
This should be a detailed description and example - assume
someone will want to parse this file and will want to know what
happens in unusual cases - null input, etc.
-->
<b>edialign</b> reads any normal sequence USAs. You must give as
input at least two sequences. You can use proteins as well as nucleic
acids, but you can't mix them.
<p>
<a name="input.1"></a>
<h3>Input files for usage example </h3>
<p><h3>File: vtest.seq</h3>
<table width="90%"><tr><td bgcolor="#FFCCFF">
<pre>
>HTL2
LDTAPCLFSDGSPQKAAYVLWDQTILQQDITPLPSHETHSAQKGELLALICGLRAAKPWP
SLNIFLDSKY
>MMLV
GKKLNVYTDSRYAFATAHIHGEIYRRRGLLTSEGKEIKNKDEILALLKALFLPKRLSIIH
CPGHQKGHSAEARGNRMADQAARKAAITETPDTSTLL
>HEPB
RPGLCQVFADATPTGWGLVMGHQRMRGTFSAPLPIHTAELLAACFARSRSGANIIGTDNS
GRTSLYADSPSVPSHLPDRVH
</pre>
</td></tr></table><p>
<H2>
Output file format
</H2>
<!--
This includes example output file formats.
This should be a detailed description and example - assume
someone will want to parse this file and will want to know what
happens in unusual cases - null output, errors etc.
If you wish to include the standard description of the avalable
report formats, use:
#include file="inc/reportformats.ihtml"
-->
<b>edialign</b> produces two output files with a multiple sequence
alignment. The first one is a file in DIALIGN format and the second
one is a sequence file in any format you choose (by default
fastA). Capital letters denote aligned residues, i.e. residues
involved in at least one of the "diagonals" in the
alignment. Lower-case letters denote residues not belonging to any of
these selected "diagonals". They are not considered to be aligned by
DIALIGN. Thus, if a lower-case letter is standing in the same column
with other letters, this is pure chance ; these residues are not
considered to be homologous.
<p>
Numbers below the alignment reflect the degree of local similarity
among sequences. More precisely, they represent the sum of weights of
fragments connecting residues at the respective position. These
numbers are normalized such that regions of maximum similarity always
get a score of 9 - no matter how strong this maximum simliarity is. In
previous verions of the program, '*' characters were used instead of
numbers ; with the -stars=n option, '*' characters can be used as
previously.
<p>
At the bottom of the file you can find the "guide tree" used to make
the alignment, written in "nested parentheses" format.
<p>
<a name="output.1"></a>
<h3>Output files for usage example </h3>
<p><h3>File: vtest.fasta</h3>
<table width="90%"><tr><td bgcolor="#CCFFCC">
<pre>
>HTL2
ldtapC-LFSDGSPQKAAYVLWDQTILQQDITPLPSHethsaqkgELLAliCglraAKPW
PSLNIFLDSKY-------------------------------------------------
-----------------------------------------
>MMLV
gkk---------------------------------------------------------
--LNVYTDSRYafatahihgeiyrrrglltsegkeiknkdeilallkalflpkrlsiihc
pghqkghsaeargnrmADQAARKAAITETPDTSTLL-----
>HEPB
rpgl-CqVFADATPTGWGLVMGHQRMRGTFSAPLPIHta------ELLAa-Cf---ARSR
SGANIIg-----------------------------------------------------
----------------TDNSGRTSLYADSPSVPSHLpdrvh
</pre>
</td></tr></table><p>
<p><h3>File: vtest.edialign</h3>
<table width="90%"><tr><td bgcolor="#CCFFCC">
<pre>
DIALIGN 2.2.1
*************
Program code written by Burkhard Morgenstern and Said Abdeddaim
e-mail contact: dialign (at) gobics (dot) de
Published research assisted by DIALIGN 2 should cite:
Burkhard Morgenstern (1999).
DIALIGN 2: improvement of the segment-to-segment
approach to multiple sequence alignment.
Bioinformatics 15, 211 - 218.
For more information, please visit the DIALIGN home page at
http://bibiserv.techfak.uni-bielefeld.de/dialign/
************************************************************
program call: edialign
Aligned sequences: length:
================== =======
1) HTL2 70
2) MMLV 97
3) HEPB 81
Average seq. length: 82.7
Please note that only upper-case letters are considered to be aligned.
Alignment (DIALIGN format):
===========================
HTL2 1 ldtapC-LFS DGSPQKAAYV LWDQTILQQD ITPLPSHeth saqkgELLAl
MMLV 1 gkk------- ---------- ---------- ---------- ----------
HEPB 1 rpgl-CqVFA DATPTGWGLV MGHQRMRGTF SAPLPIHta- -----ELLAa
0000000999 9999999999 9999999999 9999999000 0000000000
HTL2 50 iCglraAKPW PSLNIFLDSK Y--------- ---------- ----------
MMLV 4 ---------- --LNVYTDSR Yafatahihg eiyrrrgllt segkeiknkd
HEPB 44 -Cf---ARSR SGANIIg--- ---------- ---------- ----------
0000000000 0077777777 7000000000 0000000000 0000000000
HTL2 71 ---------- ---------- ---------- ---------- ----------
MMLV 42 eilallkalf lpkrlsiihc pghqkghsae argnrmADQA ARKAAITETP
HEPB 57 ---------- ---------- ---------- ------TDNS GRTSLYADSP
0000000000 0000000000 0000000000 0000001111 1111111111
HTL2 71 ---------- -
MMLV 92 DTSTLL---- -
HEPB 71 SVPSHLpdrv h
1111110000 0
Sequence tree:
==============
Tree constructed using UPGMA based on DIALIGN fragment weight scores
((HTL2 :0.145587HEPB :0.145587):0.108531MMLV :0.254117);
</pre>
</td></tr></table><p>
<H2>
Data files
</H2>
The scoring schemes are hard coded in the program and cannot be
changed. For proteins <b>edialign</b> always uses the BLOSUM62 table.
<H2>
Notes
</H2>
We strongly recommend to use the "translation" option if nucleic acid
sequences are expected to contain protein coding regions, as it will
significantly increase the sensitivity of the alignment procedure in
such cases.
<p>
If you want to compare long genomic sequences it is recommended to
speed up the algorithm by:
<p>
<ul>
<li>
setting "Nucleic acid sequence alignment mode" to "mixed alignment"
(-nucmode=ma)
<li>
setting "Maximum fragment length" to 30 (-lmax=30)
<li>
setting "Consider only N-fragment pairs that start with two matches" to yes
(-fragmat) and setting the similarity score threshold for considering
P-fragment pairs to 8 (-fragsim=8) (which actually implies that you consider
only fragments that start with a match).
<li>
setting the "Threshold" T to 2.0 (-threshold=2.0)
</ul>
<p>
It is also recommended to increase the chance of finding coding exons
by setting "Nucleic acid sequence alignment mode" to "mixed alignment"
(-nucmode=ma) and setting "Also consider the reverse complement"
(-revcomp).
<H2>
References
</H2>
<ol>
<li>
B. Morgenstern, A. Dress, T. Werner. Multiple DNA and protein sequence
alignment based on segment-to-segment
comparison. Proc. Natl. Acad. Sci. USA 93, 12098 - 12103 (1996)
<li>
B. Morgenstern. DIALIGN 2: improvement of the segment-to-segment
approach to multiple sequence alignment. Bioinformatics 15, 211 - 218
(1999).
<li>
B. Morgenstern, O. Rinner, S. Abdeddaim, D. Haase, K. F. X. Mayer,
A. W. M. Dress H.-W. Mewes. Exon discovery by genomic sequence
alignment. Bioinformatics 18, 777 - 787 (2002)
</ol>
<H2>
Warnings
</H2>
Remember that lowercase characters represent parts of the sequence
that are not aligned. You should not use the dialign output as such
for sequence family or phylogeny studies, but take only part of the
alignment and/or remove the lowercase characters using a multiple
sequence editor. The current version of the program has no provision
for doing this automatically.
<H2>
Diagnostic Error Messages
</H2>
<!--
Error messages specific to this program, eg:
"FATAL xxx" - means you have not set up the xxx data using program <b>prog</b>.<p>
-->
None.
<H2>
Exit status
</H2>
<!--
Description of the exit status for various error conditions
-->
It always exits with status 0.
<H2>
Known bugs
</H2>
<!--
Bugs noted but not yet fixed.
-->
None.
<!--
<H2>
See also
</H2>
-->
<h2><a name="See also">See also</a></h2>
<table border cellpadding=4 bgcolor="#FFFFF0">
<tr><th>Program name</th><th>Description</th></tr>
<tr>
<td><a href="emma.html">emma</a></td>
<td>Multiple alignment program - interface to ClustalW program</td>
</tr>
<tr>
<td><a href="infoalign.html">infoalign</a></td>
<td>Information on a multiple sequence alignment</td>
</tr>
<tr>
<td><a href="plotcon.html">plotcon</a></td>
<td>Plot quality of conservation of a sequence alignment</td>
</tr>
<tr>
<td><a href="prettyplot.html">prettyplot</a></td>
<td>Displays aligned sequences, with colouring and boxing</td>
</tr>
<tr>
<td><a href="showalign.html">showalign</a></td>
<td>Displays a multiple sequence alignment</td>
</tr>
<tr>
<td><a href="tranalign.html">tranalign</a></td>
<td>Align nucleic coding regions given the aligned proteins</td>
</tr>
</table>
<!--
Add any comments about other associated programs (to prepare
data files?) that seealso doesn't find.
-->
<H2>
Author(s)
</H2>
<!--
Who has worked on the program in the past.
e.g. one of:
Alan Bleasby (ajb © ebi.ac.uk)
<br>
European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
Bernd Jagla (bernd © golgi.ski.mskcc.org)
<br>
Cellular Biochemistry and Biophysics Program, Rockefeller
Research Laboratories, Memorial Sloan-Kettering Cancer Center, 1275 York
Avenue, Box 251,New York, NY 10021.
David Martin (dmartin © rfcgr.mrc.ac.uk)
<br>
Gos Micklem (gos © ebi.ac.uk)
<br>
Informatics Division, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
Gary Williams (gwilliam © rfcgr.mrc.ac.uk)
<br>
MRC Rosalind Franklin Centre for Genomics Research
Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SB, UK
Ian Longden (il © sanger.ac.uk)
<br>
Sanger Institute, Wellcome Trust Genome Campus, Hinxton,
Cambridge, CB10 1SA, UK.
Mark Faller (current e-mail address unknown)
<br>
while he was with:
<br>
HGMP-RC, Genome Campus, Hinxton, Cambridge CB10 1SB, UK
Michael K. Schuster and Martin Grabner (martin.grabner © univie.ac.at)
<br>
from the Austrian National EMBnet node.
Michael Schmitz (mschmitz © lbl.gov)
<br>
Lawrence Berkeley Labs, USA
Nicolas Tourasse (nicolas.tourasse © biotek.uio.no)
<br>
Biotechnology Center of Oslo
Peter Rice (pmr © ebi.ac.uk)
<br>
Informatics Division, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
Richard Durbin (rd © sanger.ac.uk)
<br>
Sanger Institute, Wellcome Trust Genome Campus, Hinxton,
Cambridge, CB10 1SA, UK.
Richard Bruskiewich ([email protected])
<br>
while he was at:
<br>
Sanger Institute, Wellcome Trust Genome Campus, Hinxton,
Cambridge, CB10 1SA, UK.
Rodrigo Lopez (rls © ebi.ac.uk)
<br>
European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
Sinead O'Leary (current e-mail address unknown)
<br>
while she was at:
<br>
HGMP-RC, Genome Campus, Hinxton, Cambridge CB10 1SB, UK
Tim Carver (tcarver © rfcgr.mrc.ac.uk)
<br>
MRC Rosalind Franklin Centre for Genomics Research
Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SB, UK
Thomas Laurent (thomas.laurent © uk.lionbioscience.com)
<br>
Lion Bioscience Ltd,
Compass House,
80-82 Newmarket Road,
Cambridge,
CB5 8DZ,
UK
Val Curwen (vac © sanger.ac.uk)
<br>
Sanger Institute, Wellcome Trust Genome Campus, Hinxton,
Cambridge, CB10 1SA, UK.
-->
The EMBOSS direct port was done by
Alan Bleasby (ajb © ebi.ac.uk)
<br>
European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
based on ACD written by Guy Bottu ([email protected]) for a
wrapper written at BEN, ULB, Brussels, Belgium
<p>
The program DIALIGN itself was written by Burkhard Morgenstern, Said
Abdeddaim, Klaus Hahn, Thomas Werner, Kornelie Frech and Andreas
Dress. Universitaet Bielefeld (FSPM and International Graduate School
in Bioinformatics and Genome Research) - GSF Research Center (ISG,
IBB, MIPS/IBI) - North Carolina State University - Universite de Rouen
- MPI fuer Biochemie (Martinsried) - University of Goettingen,
Institute of Microbiology and Genetics - Rhone-Poulenc Rorer
<p>
For help on the original DIALIGN2, contact: [email protected]
<H2>
History
</H2>
<!--
Date written and what changes have been made go in this file.
-->
First committed on 5th December 2006.
<H2>
Target users
</H2>
<!--
For general users, use this text
-->
This program is intended to be used by everyone and everything, from naive users to embedded scripts.
<H2>
Comments
</H2>
<!--
User/developer/other comments go in this file.
-->
None
</BODY>
</HTML>