forked from qax-os/excelize
-
Notifications
You must be signed in to change notification settings - Fork 0
/
crypt.go
1018 lines (964 loc) · 31 KB
/
crypt.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2016 - 2025 The excelize Authors. All rights reserved. Use of
// this source code is governed by a BSD-style license that can be found in
// the LICENSE file.
//
// Package excelize providing a set of functions that allow you to write to and
// read from XLAM / XLSM / XLSX / XLTM / XLTX files. Supports reading and
// writing spreadsheet documents generated by Microsoft Excel™ 2007 and later.
// Supports complex components by high compatibility, and provided streaming
// API for generating or reading data from a worksheet with huge amounts of
// data. This library needs Go version 1.20 or later.
package excelize
import (
"bytes"
"crypto/aes"
"crypto/cipher"
"crypto/md5"
"crypto/rand"
"crypto/sha1"
"crypto/sha256"
"crypto/sha512"
"encoding/base64"
"encoding/binary"
"encoding/xml"
"hash"
"math"
"path/filepath"
"reflect"
"sort"
"strings"
"github.com/richardlehane/mscfb"
"golang.org/x/crypto/md4"
"golang.org/x/crypto/ripemd160"
"golang.org/x/text/encoding/unicode"
)
var (
blockKey = []byte{0x14, 0x6e, 0x0b, 0xe7, 0xab, 0xac, 0xd0, 0xd6} // Block keys used for encryption
oleIdentifier = []byte{0xd0, 0xcf, 0x11, 0xe0, 0xa1, 0xb1, 0x1a, 0xe1}
headerCLSID = make([]byte, 16)
difSect = -4
endOfChain = -2
fatSect = -3
iterCount = 50000
packageEncryptionChunkSize = 4096
packageOffset = 8 // First 8 bytes are the size of the stream
sheetProtectionSpinCount = 1e5
workbookProtectionSpinCount = 1e5
)
// Encryption specifies the encryption structure, streams, and storages are
// required when encrypting ECMA-376 documents.
type Encryption struct {
XMLName xml.Name `xml:"encryption"`
KeyData KeyData `xml:"keyData"`
DataIntegrity DataIntegrity `xml:"dataIntegrity"`
KeyEncryptors KeyEncryptors `xml:"keyEncryptors"`
}
// KeyData specifies the cryptographic attributes used to encrypt the data.
type KeyData struct {
SaltSize int `xml:"saltSize,attr"`
BlockSize int `xml:"blockSize,attr"`
KeyBits int `xml:"keyBits,attr"`
HashSize int `xml:"hashSize,attr"`
CipherAlgorithm string `xml:"cipherAlgorithm,attr"`
CipherChaining string `xml:"cipherChaining,attr"`
HashAlgorithm string `xml:"hashAlgorithm,attr"`
SaltValue string `xml:"saltValue,attr"`
}
// DataIntegrity specifies the encrypted copies of the salt and hash values
// used to help ensure that the integrity of the encrypted data has not been
// compromised.
type DataIntegrity struct {
EncryptedHmacKey string `xml:"encryptedHmacKey,attr"`
EncryptedHmacValue string `xml:"encryptedHmacValue,attr"`
}
// KeyEncryptors specifies the key encryptors used to encrypt the data.
type KeyEncryptors struct {
KeyEncryptor []KeyEncryptor `xml:"keyEncryptor"`
}
// KeyEncryptor specifies that the schema used by this encryptor is the schema
// specified for password-based encryptors.
type KeyEncryptor struct {
XMLName xml.Name `xml:"keyEncryptor"`
URI string `xml:"uri,attr"`
EncryptedKey EncryptedKey `xml:"encryptedKey"`
}
// EncryptedKey used to generate the encrypting key.
type EncryptedKey struct {
XMLName xml.Name `xml:"http://schemas.microsoft.com/office/2006/keyEncryptor/password encryptedKey"`
SpinCount int `xml:"spinCount,attr"`
EncryptedVerifierHashInput string `xml:"encryptedVerifierHashInput,attr"`
EncryptedVerifierHashValue string `xml:"encryptedVerifierHashValue,attr"`
EncryptedKeyValue string `xml:"encryptedKeyValue,attr"`
KeyData
}
// StandardEncryptionHeader structure is used by ECMA-376 document encryption
// [ECMA-376] and Office binary document RC4 CryptoAPI encryption, to specify
// encryption properties for an encrypted stream.
type StandardEncryptionHeader struct {
Flags uint32
SizeExtra uint32
AlgID uint32
AlgIDHash uint32
KeySize uint32
ProviderType uint32
Reserved1 uint32
Reserved2 uint32
CspName string
}
// StandardEncryptionVerifier structure is used by Office Binary Document RC4
// CryptoAPI Encryption and ECMA-376 Document Encryption. Every usage of this
// structure MUST specify the hashing algorithm and encryption algorithm used
// in the EncryptionVerifier structure.
type StandardEncryptionVerifier struct {
SaltSize uint32
Salt []byte
EncryptedVerifier []byte
VerifierHashSize uint32
EncryptedVerifierHash []byte
}
// encryptionInfo structure is used for standard encryption with SHA1
// cryptographic algorithm.
type encryption struct {
BlockSize, SaltSize int
EncryptedKeyValue, EncryptedVerifierHashInput, EncryptedVerifierHashValue, SaltValue []byte
KeyBits uint32
}
// Decrypt API decrypts the CFB file format with ECMA-376 agile encryption and
// standard encryption. Support cryptographic algorithm: MD4, MD5, RIPEMD-160,
// SHA1, SHA256, SHA384 and SHA512 currently.
func Decrypt(raw []byte, opts *Options) (packageBuf []byte, err error) {
doc, err := mscfb.New(bytes.NewReader(raw))
if err != nil {
return
}
encryptionInfoBuf, encryptedPackageBuf := extractPart(doc)
mechanism, err := encryptionMechanism(encryptionInfoBuf)
if err != nil || mechanism == "extensible" {
return
}
if mechanism == "agile" {
return agileDecrypt(encryptionInfoBuf, encryptedPackageBuf, opts)
}
return standardDecrypt(encryptionInfoBuf, encryptedPackageBuf, opts)
}
// Encrypt API encrypt data with the password.
func Encrypt(raw []byte, opts *Options) ([]byte, error) {
encryptor := encryption{
EncryptedVerifierHashInput: make([]byte, 16),
EncryptedVerifierHashValue: make([]byte, 32),
SaltValue: make([]byte, 16),
BlockSize: 16,
KeyBits: 128,
SaltSize: 16,
}
// Key Encryption
encryptionInfoBuffer, err := encryptor.standardKeyEncryption(opts.Password)
if err != nil {
return nil, err
}
// Package Encryption
encryptedPackage := make([]byte, 8)
binary.LittleEndian.PutUint64(encryptedPackage, uint64(len(raw)))
encryptedPackage = append(encryptedPackage, encryptor.encrypt(raw)...)
// Create a new CFB
compoundFile := &cfb{
paths: []string{"Root Entry/"},
sectors: []sector{{name: "Root Entry", typeID: 5}},
}
compoundFile.put("EncryptionInfo", encryptionInfoBuffer)
compoundFile.put("EncryptedPackage", encryptedPackage)
return compoundFile.write(), nil
}
// extractPart extract data from storage by specified part name.
func extractPart(doc *mscfb.Reader) (encryptionInfoBuf, encryptedPackageBuf []byte) {
for entry, err := doc.Next(); err == nil; entry, err = doc.Next() {
switch entry.Name {
case "EncryptionInfo":
buf := make([]byte, entry.Size)
i, _ := doc.Read(buf)
if i > 0 {
encryptionInfoBuf = buf
}
case "EncryptedPackage":
buf := make([]byte, entry.Size)
i, _ := doc.Read(buf)
if i > 0 {
encryptedPackageBuf = buf
}
}
}
return
}
// encryptionMechanism parse password-protected documents created mechanism.
func encryptionMechanism(buffer []byte) (mechanism string, err error) {
if len(buffer) < 4 {
err = ErrUnknownEncryptMechanism
return
}
versionMajor, versionMinor := binary.LittleEndian.Uint16(buffer[:2]), binary.LittleEndian.Uint16(buffer[2:4])
if versionMajor == 4 && versionMinor == 4 {
mechanism = "agile"
return
} else if (2 <= versionMajor && versionMajor <= 4) && versionMinor == 2 {
mechanism = "standard"
return
} else if (versionMajor == 3 || versionMajor == 4) && versionMinor == 3 {
mechanism = "extensible"
}
err = ErrUnsupportedEncryptMechanism
return
}
// ECMA-376 Standard Encryption
// standardDecrypt decrypt the CFB file format with ECMA-376 standard encryption.
func standardDecrypt(encryptionInfoBuf, encryptedPackageBuf []byte, opts *Options) ([]byte, error) {
encryptionHeaderSize := binary.LittleEndian.Uint32(encryptionInfoBuf[8:12])
block := encryptionInfoBuf[12 : 12+encryptionHeaderSize]
header := StandardEncryptionHeader{
Flags: binary.LittleEndian.Uint32(block[:4]),
SizeExtra: binary.LittleEndian.Uint32(block[4:8]),
AlgID: binary.LittleEndian.Uint32(block[8:12]),
AlgIDHash: binary.LittleEndian.Uint32(block[12:16]),
KeySize: binary.LittleEndian.Uint32(block[16:20]),
ProviderType: binary.LittleEndian.Uint32(block[20:24]),
Reserved1: binary.LittleEndian.Uint32(block[24:28]),
Reserved2: binary.LittleEndian.Uint32(block[28:32]),
CspName: string(block[32:]),
}
block = encryptionInfoBuf[12+encryptionHeaderSize:]
algIDMap := map[uint32]string{
0x0000660E: "AES-128",
0x0000660F: "AES-192",
0x00006610: "AES-256",
}
algorithm := "AES"
_, ok := algIDMap[header.AlgID]
if !ok {
algorithm = "RC4"
}
verifier := standardEncryptionVerifier(algorithm, block)
secretKey, err := standardConvertPasswdToKey(header, verifier, opts)
if err != nil {
return nil, err
}
// decrypted data
x := encryptedPackageBuf[8:]
blob, err := aes.NewCipher(secretKey)
if err != nil {
return nil, err
}
decrypted := make([]byte, len(x))
size := 16
for bs, be := 0, size; bs < len(x); bs, be = bs+size, be+size {
blob.Decrypt(decrypted[bs:be], x[bs:be])
}
return decrypted, err
}
// standardEncryptionVerifier extract ECMA-376 standard encryption verifier.
func standardEncryptionVerifier(algorithm string, blob []byte) StandardEncryptionVerifier {
verifier := StandardEncryptionVerifier{
SaltSize: binary.LittleEndian.Uint32(blob[:4]),
Salt: blob[4:20],
EncryptedVerifier: blob[20:36],
VerifierHashSize: binary.LittleEndian.Uint32(blob[36:40]),
}
if algorithm == "RC4" {
verifier.EncryptedVerifierHash = blob[40:60]
} else if algorithm == "AES" {
verifier.EncryptedVerifierHash = blob[40:72]
}
return verifier
}
// standardConvertPasswdToKey generate intermediate key from given password.
func standardConvertPasswdToKey(header StandardEncryptionHeader, verifier StandardEncryptionVerifier, opts *Options) ([]byte, error) {
encoder := unicode.UTF16(unicode.LittleEndian, unicode.IgnoreBOM).NewEncoder()
passwordBuffer, err := encoder.Bytes([]byte(opts.Password))
if err != nil {
return nil, err
}
key := hashing("sha1", verifier.Salt, passwordBuffer)
for i := 0; i < iterCount; i++ {
iterator := createUInt32LEBuffer(i, 4)
key = hashing("sha1", iterator, key)
}
var block int
hFinal := hashing("sha1", key, createUInt32LEBuffer(block, 4))
cbRequiredKeyLength := int(header.KeySize) / 8
cbHash := sha1.Size
buf1 := bytes.Repeat([]byte{0x36}, 64)
buf1 = append(standardXORBytes(hFinal, buf1[:cbHash]), buf1[cbHash:]...)
x1 := hashing("sha1", buf1)
buf2 := bytes.Repeat([]byte{0x5c}, 64)
buf2 = append(standardXORBytes(hFinal, buf2[:cbHash]), buf2[cbHash:]...)
x2 := hashing("sha1", buf2)
x3 := append(x1, x2...)
keyDerived := x3[:cbRequiredKeyLength]
return keyDerived, err
}
// standardXORBytes perform XOR operations for two bytes slice.
func standardXORBytes(a, b []byte) []byte {
r := make([][2]byte, len(a))
for i, e := range a {
r[i] = [2]byte{e, b[i]}
}
buf := make([]byte, len(a))
for p, q := range r {
buf[p] = q[0] ^ q[1]
}
return buf
}
// encrypt provides a function to encrypt given value with AES cryptographic
// algorithm.
func (e *encryption) encrypt(input []byte) []byte {
inputBytes := len(input)
if pad := inputBytes % e.BlockSize; pad != 0 {
inputBytes += e.BlockSize - pad
}
var output, chunk []byte
encryptedChunk := make([]byte, e.BlockSize)
for i := 0; i < inputBytes; i += e.BlockSize {
if i+e.BlockSize <= len(input) {
chunk = input[i : i+e.BlockSize]
} else {
chunk = input[i:]
}
chunk = append(chunk, make([]byte, e.BlockSize-len(chunk))...)
c, _ := aes.NewCipher(e.EncryptedKeyValue)
c.Encrypt(encryptedChunk, chunk)
output = append(output, encryptedChunk...)
}
return output
}
// standardKeyEncryption encrypt convert the password to an encryption key.
func (e *encryption) standardKeyEncryption(password string) ([]byte, error) {
if len(password) == 0 || len(password) > MaxFieldLength {
return nil, ErrPasswordLengthInvalid
}
var storage cfb
storage.writeUint16(0x0003)
storage.writeUint16(0x0002)
storage.writeUint32(0x24)
storage.writeUint32(0xA4)
storage.writeUint32(0x24)
storage.writeUint32(0x00)
storage.writeUint32(0x660E)
storage.writeUint32(0x8004)
storage.writeUint32(0x80)
storage.writeUint32(0x18)
storage.writeUint64(0x00)
providerName := "Microsoft Enhanced RSA and AES Cryptographic Provider (Prototype)"
storage.writeStrings(providerName)
storage.writeUint16(0x00)
storage.writeUint32(0x10)
keyDataSaltValue, _ := randomBytes(16)
verifierHashInput, _ := randomBytes(16)
e.SaltValue = keyDataSaltValue
e.EncryptedKeyValue, _ = standardConvertPasswdToKey(
StandardEncryptionHeader{KeySize: e.KeyBits},
StandardEncryptionVerifier{Salt: e.SaltValue},
&Options{Password: password})
verifierHashInputKey := hashing("sha1", verifierHashInput)
e.EncryptedVerifierHashInput = e.encrypt(verifierHashInput)
e.EncryptedVerifierHashValue = e.encrypt(verifierHashInputKey)
storage.writeBytes(e.SaltValue)
storage.writeBytes(e.EncryptedVerifierHashInput)
storage.writeUint32(0x14)
storage.writeBytes(e.EncryptedVerifierHashValue)
storage.position = 0
return storage.stream, nil
}
// ECMA-376 Agile Encryption
// agileDecrypt decrypt the CFB file format with ECMA-376 agile encryption.
// Support cryptographic algorithm: MD4, MD5, RIPEMD-160, SHA1, SHA256,
// SHA384 and SHA512.
func agileDecrypt(encryptionInfoBuf, encryptedPackageBuf []byte, opts *Options) (packageBuf []byte, err error) {
var encryptionInfo Encryption
if encryptionInfo, err = parseEncryptionInfo(encryptionInfoBuf[8:]); err != nil {
return
}
// Convert the password into an encryption key.
key, err := convertPasswdToKey(opts.Password, blockKey, encryptionInfo)
if err != nil {
return
}
// Use the key to decrypt the package key.
encryptedKey := encryptionInfo.KeyEncryptors.KeyEncryptor[0].EncryptedKey
saltValue, err := base64.StdEncoding.DecodeString(encryptedKey.SaltValue)
if err != nil {
return
}
encryptedKeyValue, err := base64.StdEncoding.DecodeString(encryptedKey.EncryptedKeyValue)
if err != nil {
return
}
packageKey, _ := decrypt(key, saltValue, encryptedKeyValue)
// Use the package key to decrypt the package.
return decryptPackage(packageKey, encryptedPackageBuf, encryptionInfo)
}
// convertPasswdToKey convert the password into an encryption key.
func convertPasswdToKey(passwd string, blockKey []byte, encryption Encryption) (key []byte, err error) {
var b bytes.Buffer
saltValue, err := base64.StdEncoding.DecodeString(encryption.KeyEncryptors.KeyEncryptor[0].EncryptedKey.SaltValue)
if err != nil {
return
}
b.Write(saltValue)
encoder := unicode.UTF16(unicode.LittleEndian, unicode.IgnoreBOM).NewEncoder()
passwordBuffer, err := encoder.Bytes([]byte(passwd))
if err != nil {
return
}
b.Write(passwordBuffer)
// Generate the initial hash.
key = hashing(encryption.KeyData.HashAlgorithm, b.Bytes())
// Now regenerate until spin count.
for i := 0; i < encryption.KeyEncryptors.KeyEncryptor[0].EncryptedKey.SpinCount; i++ {
iterator := createUInt32LEBuffer(i, 4)
key = hashing(encryption.KeyData.HashAlgorithm, iterator, key)
}
// Now generate the final hash.
key = hashing(encryption.KeyData.HashAlgorithm, key, blockKey)
// Truncate or pad as needed to get to length of keyBits.
keyBytes := encryption.KeyEncryptors.KeyEncryptor[0].EncryptedKey.KeyBits / 8
if len(key) < keyBytes {
tmp := make([]byte, 0x36)
key = append(key, tmp...)
} else if len(key) > keyBytes {
key = key[:keyBytes]
}
return
}
// hashing data by specified hash algorithm.
func hashing(hashAlgorithm string, buffer ...[]byte) (key []byte) {
hashMap := map[string]hash.Hash{
"md4": md4.New(),
"md5": md5.New(),
"ripemd-160": ripemd160.New(),
"sha1": sha1.New(),
"sha256": sha256.New(),
"sha384": sha512.New384(),
"sha512": sha512.New(),
}
handler, ok := hashMap[strings.ToLower(hashAlgorithm)]
if !ok {
return key
}
for _, buf := range buffer {
_, _ = handler.Write(buf)
}
key = handler.Sum(nil)
return key
}
// createUInt32LEBuffer create buffer with little endian 32-bit unsigned
// integer.
func createUInt32LEBuffer(value int, bufferSize int) []byte {
buf := make([]byte, bufferSize)
binary.LittleEndian.PutUint32(buf, uint32(value))
return buf
}
// parseEncryptionInfo parse the encryption info XML into an object.
func parseEncryptionInfo(encryptionInfo []byte) (encryption Encryption, err error) {
err = xml.Unmarshal(encryptionInfo, &encryption)
return
}
// decrypt provides a function to decrypt input by given cipher algorithm,
// cipher chaining, key and initialization vector.
func decrypt(key, iv, input []byte) (packageKey []byte, err error) {
block, err := aes.NewCipher(key)
if err != nil {
return input, err
}
cipher.NewCBCDecrypter(block, iv).CryptBlocks(input, input)
return input, nil
}
// decryptPackage decrypt package by given packageKey and encryption
// info.
func decryptPackage(packageKey, input []byte, encryption Encryption) (outputChunks []byte, err error) {
encryptedKey, offset := encryption.KeyData, packageOffset
var i, start, end int
var iv, outputChunk []byte
for end < len(input) {
start = end
end = start + packageEncryptionChunkSize
if end > len(input) {
end = len(input)
}
// Grab the next chunk
var inputChunk []byte
if (end + offset) < len(input) {
inputChunk = input[start+offset : end+offset]
} else {
inputChunk = input[start+offset : end]
}
// Pad the chunk if it is not an integer multiple of the block size
remainder := len(inputChunk) % encryptedKey.BlockSize
if remainder != 0 {
inputChunk = append(inputChunk, make([]byte, encryptedKey.BlockSize-remainder)...)
}
// Create the initialization vector
iv, err = createIV(i, encryption)
if err != nil {
return
}
// Decrypt the chunk and add it to the array
outputChunk, err = decrypt(packageKey, iv, inputChunk)
if err != nil {
return
}
outputChunks = append(outputChunks, outputChunk...)
i++
}
return
}
// createIV create an initialization vector (IV).
func createIV(blockKey interface{}, encryption Encryption) ([]byte, error) {
encryptedKey := encryption.KeyData
// Create the block key from the current index
var blockKeyBuf []byte
if reflect.TypeOf(blockKey).Kind() == reflect.Int {
blockKeyBuf = createUInt32LEBuffer(blockKey.(int), 4)
} else {
blockKeyBuf = blockKey.([]byte)
}
saltValue, err := base64.StdEncoding.DecodeString(encryptedKey.SaltValue)
if err != nil {
return nil, err
}
// Create the initialization vector by hashing the salt with the block key.
// Truncate or pad as needed to meet the block size.
iv := hashing(encryptedKey.HashAlgorithm, append(saltValue, blockKeyBuf...))
if len(iv) < encryptedKey.BlockSize {
tmp := make([]byte, 0x36)
iv = append(iv, tmp...)
} else if len(iv) > encryptedKey.BlockSize {
iv = iv[:encryptedKey.BlockSize]
}
return iv, nil
}
// randomBytes returns securely generated random bytes. It will return an
// error if the system's secure random number generator fails to function
// correctly, in which case the caller should not continue.
func randomBytes(n int) ([]byte, error) {
b := make([]byte, n)
_, err := rand.Read(b)
return b, err
}
// ISO Write Protection Method
// genISOPasswdHash implements the ISO password hashing algorithm by given
// plaintext password, name of the cryptographic hash algorithm, salt value
// and spin count.
func genISOPasswdHash(passwd, hashAlgorithm, salt string, spinCount int) (hashValue, saltValue string, err error) {
if len(passwd) < 1 || len(passwd) > MaxFieldLength {
err = ErrPasswordLengthInvalid
return
}
algorithmName, ok := map[string]string{
"MD4": "md4",
"MD5": "md5",
"SHA-1": "sha1",
"SHA-256": "sha256",
"SHA-384": "sha384",
"SHA-512": "sha512",
}[hashAlgorithm]
if !ok {
err = ErrUnsupportedHashAlgorithm
return
}
var b bytes.Buffer
s, _ := randomBytes(16)
if salt != "" {
if s, err = base64.StdEncoding.DecodeString(salt); err != nil {
return
}
}
b.Write(s)
encoder := unicode.UTF16(unicode.LittleEndian, unicode.IgnoreBOM).NewEncoder()
passwordBuffer, _ := encoder.Bytes([]byte(passwd))
b.Write(passwordBuffer)
// Generate the initial hash.
key := hashing(algorithmName, b.Bytes())
// Now regenerate until spin count.
for i := 0; i < spinCount; i++ {
iterator := createUInt32LEBuffer(i, 4)
key = hashing(algorithmName, key, iterator)
}
hashValue, saltValue = base64.StdEncoding.EncodeToString(key), base64.StdEncoding.EncodeToString(s)
return
}
// Compound File Binary Implements
// cfb structure is used for the compound file binary (CFB) file format writer.
type cfb struct {
stream []byte
position int
paths []string
sectors []sector
}
// sector structure used for FAT, directory, miniFAT, and miniStream sectors.
type sector struct {
clsID, content []byte
name string
C, L, R, color, size, start, state, typeID int
}
// writeBytes write bytes in the stream by a given value with an offset.
func (c *cfb) writeBytes(value []byte) {
pos := c.position
for i := 0; i < len(value); i++ {
for j := len(c.stream); j <= i+pos; j++ {
c.stream = append(c.stream, 0)
}
c.stream[i+pos] = value[i]
}
c.position = pos + len(value)
}
// writeUint16 write an uint16 data type bytes in the stream by a given value
// with an offset.
func (c *cfb) writeUint16(value int) {
buf := make([]byte, 2)
binary.LittleEndian.PutUint16(buf, uint16(value))
c.writeBytes(buf)
}
// writeUint32 write an uint32 data type bytes in the stream by a given value
// with an offset.
func (c *cfb) writeUint32(value int) {
buf := make([]byte, 4)
binary.LittleEndian.PutUint32(buf, uint32(value))
c.writeBytes(buf)
}
// writeUint64 write an uint64 data type bytes in the stream by a given value
// with an offset.
func (c *cfb) writeUint64(value int) {
buf := make([]byte, 8)
binary.LittleEndian.PutUint64(buf, uint64(value))
c.writeBytes(buf)
}
// writeStrings write strings in the stream by a given value with an offset.
func (c *cfb) writeStrings(value string) {
encoder := unicode.UTF16(unicode.LittleEndian, unicode.IgnoreBOM).NewEncoder()
buffer, err := encoder.Bytes([]byte(value))
if err != nil {
return
}
c.writeBytes(buffer)
}
// put provides a function to add an entry to compound file by given entry name
// and raw bytes.
func (c *cfb) put(name string, content []byte) {
path := c.paths[0]
if len(path) <= len(name) && name[:len(path)] == path {
path = name
} else {
if len(path) > 0 && string(path[len(path)-1]) != "/" {
path += "/"
}
path = strings.ReplaceAll(path+name, "//", "/")
}
file := sector{name: path, typeID: 2, content: content, size: len(content)}
c.sectors = append(c.sectors, file)
c.paths = append(c.paths, path)
}
// compare provides a function to compare object path, each set of sibling
// objects in one level of the containment hierarchy (all child objects under
// a storage object) is represented as a red-black tree. The parent object of
// this set of siblings will have a pointer to the top of this tree.
func (c *cfb) compare(left, right string) int {
L, R, i, j := strings.Split(left, "/"), strings.Split(right, "/"), 0, 0
for Z := int(math.Min(float64(len(L)), float64(len(R)))); i < Z; i++ {
if j = len(L[i]) - len(R[i]); j != 0 {
return j
}
if L[i] != R[i] {
if L[i] < R[i] {
return -1
}
return 1
}
}
return len(L) - len(R)
}
// prepare provides a function to prepare object before write stream.
func (c *cfb) prepare() {
type object struct {
path string
sector sector
}
var objects []object
for i := 0; i < len(c.paths); i++ {
if c.sectors[i].typeID == 0 {
continue
}
objects = append(objects, object{path: c.paths[i], sector: c.sectors[i]})
}
sort.Slice(objects, func(i, j int) bool {
return c.compare(objects[i].path, objects[j].path) == 0
})
c.paths, c.sectors = []string{}, []sector{}
for i := 0; i < len(objects); i++ {
c.paths = append(c.paths, objects[i].path)
c.sectors = append(c.sectors, objects[i].sector)
}
for i := 0; i < len(objects); i++ {
sector, path := &c.sectors[i], c.paths[i]
sector.name, sector.color = filepath.Base(path), 1
sector.L, sector.R, sector.C = -1, -1, -1
sector.size, sector.start = len(sector.content), 0
if len(sector.clsID) == 0 {
sector.clsID = headerCLSID
}
if i == 0 {
sector.C = -1
if len(objects) > 1 {
sector.C = 1
}
sector.size, sector.typeID = 0, 5
} else {
if len(c.paths) > i+1 && filepath.Dir(c.paths[i+1]) == filepath.Dir(path) {
sector.R = i + 1
}
sector.typeID = 2
}
}
}
// locate provides a function to locate sectors location and size of the
// compound file.
func (c *cfb) locate() []int {
var miniStreamSectorSize, FATSectorSize int
for i := 0; i < len(c.sectors); i++ {
sector := c.sectors[i]
if len(sector.content) == 0 {
continue
}
size := len(sector.content)
if size > 0 {
if size < 0x1000 {
miniStreamSectorSize += (size + 0x3F) >> 6
} else {
FATSectorSize += (size + 0x01FF) >> 9
}
}
}
directorySectors := (len(c.paths) + 3) >> 2
miniStreamSectors := (miniStreamSectorSize + 7) >> 3
miniFATSectors := (miniStreamSectorSize + 0x7F) >> 7
sectors := miniStreamSectors + FATSectorSize + directorySectors + miniFATSectors
FATSectors := (sectors + 0x7F) >> 7
DIFATSectors := 0
if FATSectors > 109 {
DIFATSectors = int(math.Ceil((float64(FATSectors) - 109) / 0x7F))
}
for ((sectors + FATSectors + DIFATSectors + 0x7F) >> 7) > FATSectors {
FATSectors++
if FATSectors <= 109 {
DIFATSectors = 0
} else {
DIFATSectors = int(math.Ceil((float64(FATSectors) - 109) / 0x7F))
}
}
location := []int{1, DIFATSectors, FATSectors, miniFATSectors, directorySectors, FATSectorSize, miniStreamSectorSize, 0}
c.sectors[0].size = miniStreamSectorSize << 6
c.sectors[0].start = location[0] + location[1] + location[2] + location[3] + location[4] + location[5]
location[7] = c.sectors[0].start + ((location[6] + 7) >> 3)
return location
}
// writeMSAT provides a function to write compound file master sector allocation
// table.
func (c *cfb) writeMSAT(location []int) {
var i, offset int
for i = 0; i < 109; i++ {
if i < location[2] {
c.writeUint32(location[1] + i)
} else {
c.writeUint32(-1)
}
}
if location[1] != 0 {
for offset = 0; offset < location[1]; offset++ {
for ; i < 236+offset*127; i++ {
if i < location[2] {
c.writeUint32(location[1] + i)
} else {
c.writeUint32(-1)
}
}
if offset == location[1]-1 {
c.writeUint32(endOfChain)
} else {
c.writeUint32(offset + 1)
}
}
}
}
// writeDirectoryEntry provides a function to write compound file directory
// entries. The directory entry array is an array of directory entries that
// are grouped into a directory sector. Each storage object or stream object
// within a compound file is represented by a single directory entry. The
// space for the directory sectors that are holding the array is allocated
// from the FAT.
func (c *cfb) writeDirectoryEntry(location []int) {
var sector sector
var j, sectorSize int
for i := 0; i < location[4]<<2; i++ {
var path string
if i < len(c.paths) {
path = c.paths[i]
}
if i >= len(c.paths) || len(path) == 0 {
for j = 0; j < 17; j++ {
c.writeUint32(0)
}
for j = 0; j < 3; j++ {
c.writeUint32(-1)
}
for j = 0; j < 12; j++ {
c.writeUint32(0)
}
continue
}
sector = c.sectors[i]
if i == 0 {
if sector.size > 0 {
sector.start = sector.start - 1
} else {
sector.start = endOfChain
}
}
name := sector.name
sectorSize = 2 * (len(name) + 1)
c.writeStrings(name)
c.position += 64 - 2*(len(name))
c.writeUint16(sectorSize)
c.writeBytes([]byte(string(rune(sector.typeID))))
c.writeBytes([]byte(string(rune(sector.color))))
c.writeUint32(sector.L)
c.writeUint32(sector.R)
c.writeUint32(sector.C)
if len(sector.clsID) == 0 {
for j = 0; j < 4; j++ {
c.writeUint32(0)
}
} else {
c.writeBytes(sector.clsID)
}
c.writeUint32(sector.state)
c.writeUint32(0)
c.writeUint32(0)
c.writeUint32(0)
c.writeUint32(0)
c.writeUint32(sector.start)
c.writeUint32(sector.size)
c.writeUint32(0)
}
}
// writeSectorChains provides a function to write compound file sector chains.
func (c *cfb) writeSectorChains(location []int) sector {
var i, j, offset, sectorSize int
writeSectorChain := func(head, offset int) int {
for offset += head; i < offset-1; i++ {
c.writeUint32(i + 1)
}
if head != 0 {
i++
c.writeUint32(endOfChain)
}
return offset
}
for offset += location[1]; i < offset; i++ {
c.writeUint32(difSect)
}
for offset += location[2]; i < offset; i++ {
c.writeUint32(fatSect)
}
offset = writeSectorChain(location[3], offset)
offset = writeSectorChain(location[4], offset)
sector := c.sectors[0]
for ; j < len(c.sectors); j++ {
if sector = c.sectors[j]; len(sector.content) == 0 {
continue
}
if sectorSize = len(sector.content); sectorSize < 0x1000 {
continue
}
c.sectors[j].start = offset
offset = writeSectorChain((sectorSize+0x01FF)>>9, offset)
}
writeSectorChain((location[6]+7)>>3, offset)
for c.position&0x1FF != 0 {
c.writeUint32(endOfChain)
}
i, offset = 0, 0
for j = 0; j < len(c.sectors); j++ {
if sector = c.sectors[j]; len(sector.content) == 0 {
continue
}
if sectorSize = len(sector.content); sectorSize == 0 || sectorSize >= 0x1000 {
continue
}
sector.start = offset
offset = writeSectorChain((sectorSize+0x3F)>>6, offset)
}
for c.position&0x1FF != 0 {
c.writeUint32(endOfChain)
}
return sector
}
// write provides a function to create compound file package stream.
func (c *cfb) write() []byte {
c.prepare()
location := c.locate()
c.stream = make([]byte, location[7]<<9)
var i, j int
for i = 0; i < 8; i++ {
c.writeBytes([]byte{oleIdentifier[i]})
}
c.writeBytes(make([]byte, 16))
c.writeUint16(0x003E)
c.writeUint16(0x0003)
c.writeUint16(0xFFFE)
c.writeUint16(0x0009)
c.writeUint16(0x0006)
c.writeBytes(make([]byte, 10))
c.writeUint32(location[2])
c.writeUint32(location[0] + location[1] + location[2] + location[3] - 1)
c.writeUint32(0)
c.writeUint32(1 << 12)
if location[3] != 0 {
c.writeUint32(location[0] + location[1] + location[2] - 1)
} else {
c.writeUint32(endOfChain)
}
c.writeUint32(location[3])
if location[1] != 0 {
c.writeUint32(location[0] - 1)
} else {
c.writeUint32(endOfChain)
}
c.writeUint32(location[1])
c.writeMSAT(location)
sector := c.writeSectorChains(location)
c.writeDirectoryEntry(location)
for i = 1; i < len(c.sectors); i++ {
sector = c.sectors[i]
if sector.size >= 0x1000 {
c.position = (sector.start + 1) << 9
for j = 0; j < sector.size; j++ {
c.writeBytes([]byte{sector.content[j]})
}
for ; j&0x1FF != 0; j++ {
c.writeBytes([]byte{0})
}